{"title":"Porous Carbon Materials: from Traditional Synthesis, Machine Learning-Assisted Design, to Their Applications in Advanced Energy Storage and Conversion","authors":"Haitao Li, Qingchun Yan, Jihao Li, Jieshan Qiu, Haijiao Zhang","doi":"10.1002/adfm.202504272","DOIUrl":null,"url":null,"abstract":"Porous carbon materials (PCMs) have long played key roles in energy storage and conversion fields, known for their abundant raw materials, tunable pore structures, large surface area, and excellent conductivity. Despite significant progress, there remains a substantial gap between the precise design of PCMs and the full utilization of their unique properties for developing high-performance electrode materials. Herein, this review systematically and comprehensively introduces PCMs from traditional synthesis, machine learning-assisted design principles to their energy storage and conversion applications. Specifically, the preparation methods for microporous, mesoporous, macroporous, and hierarchically porous carbon materials are thoroughly summarized, with an emphasis on structural control rules and formation mechanisms. It also highlights the unique advantages of PCMs in alkali metal-ion batteries, metal–sulfur batteries, supercapacitors, and electrocatalysis. Insights from in situ and operando characterizations provide a deep understanding of the correlation between structure and performance. Finally, current challenges and future directions are discussed, emphasizing the need for further advancements to meet evolving energy storage and conversion demands. This review offers valuable guidance for the rational design of high-performance porous carbon electrode materials, and points out key research directions for future development.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"55 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202504272","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Porous carbon materials (PCMs) have long played key roles in energy storage and conversion fields, known for their abundant raw materials, tunable pore structures, large surface area, and excellent conductivity. Despite significant progress, there remains a substantial gap between the precise design of PCMs and the full utilization of their unique properties for developing high-performance electrode materials. Herein, this review systematically and comprehensively introduces PCMs from traditional synthesis, machine learning-assisted design principles to their energy storage and conversion applications. Specifically, the preparation methods for microporous, mesoporous, macroporous, and hierarchically porous carbon materials are thoroughly summarized, with an emphasis on structural control rules and formation mechanisms. It also highlights the unique advantages of PCMs in alkali metal-ion batteries, metal–sulfur batteries, supercapacitors, and electrocatalysis. Insights from in situ and operando characterizations provide a deep understanding of the correlation between structure and performance. Finally, current challenges and future directions are discussed, emphasizing the need for further advancements to meet evolving energy storage and conversion demands. This review offers valuable guidance for the rational design of high-performance porous carbon electrode materials, and points out key research directions for future development.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.