A 2D/3D Heterostructure Perovskite Solar Cell with a Phase-Pure and Pristine 2D Layer

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Meng-Chen Shih, Shaun Tan, Yongli Lu, Tim Kodalle, Do-Kyoung Lee, Yifan Dong, Bryon W. Larson, Soyeon Park, Ruiqi Zhang, Matthias J. Grotevent, Tara Sverko, Hua Zhu, Yu-Kuan Lin, Carolin M. Sutter-Fella, Kai Zhu, Matthew C. Beard, Vladimir Bulović, Moungi G. Bawendi
{"title":"A 2D/3D Heterostructure Perovskite Solar Cell with a Phase-Pure and Pristine 2D Layer","authors":"Meng-Chen Shih, Shaun Tan, Yongli Lu, Tim Kodalle, Do-Kyoung Lee, Yifan Dong, Bryon W. Larson, Soyeon Park, Ruiqi Zhang, Matthias J. Grotevent, Tara Sverko, Hua Zhu, Yu-Kuan Lin, Carolin M. Sutter-Fella, Kai Zhu, Matthew C. Beard, Vladimir Bulović, Moungi G. Bawendi","doi":"10.1002/adma.202416672","DOIUrl":null,"url":null,"abstract":"Interface engineering plays a critical role in advancing the performance of perovskite solar cells. As such, 2D/3D perovskite heterostructures are of particular interest due to their optoelectrical properties and their further potential improvements. However, for conventional solution-processed 2D perovskites grown on an underlying 3D perovskite, the reaction stoichiometry is normally unbalanced with excess precursors. Moreover, the formed 2D perovskite is impure, leading to unfavorable energy band alignment at the interface. Here a simple method is presented that solves both issues simultaneously. The 2D formation reaction is taken first to completion, fully consuming excess PbI<sub>2</sub>. Then, isopropanol is utilized to remove excess organic ligands, control the 2D perovskite thickness, and obtain a phase-pure, <i>n</i> = 2, 2D perovskite. The outcome is a pristine (without residual 2D precursors) and phase-pure 2D perovskite heterostructure with improved surface passivation and charge carrier extraction compared to the conventional solution process. PSCs incorporating this treatment demonstrate a notable improvement in both stability and power conversion efficiency, with negligible hysteresis, compared to the conventional process.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"1 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416672","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interface engineering plays a critical role in advancing the performance of perovskite solar cells. As such, 2D/3D perovskite heterostructures are of particular interest due to their optoelectrical properties and their further potential improvements. However, for conventional solution-processed 2D perovskites grown on an underlying 3D perovskite, the reaction stoichiometry is normally unbalanced with excess precursors. Moreover, the formed 2D perovskite is impure, leading to unfavorable energy band alignment at the interface. Here a simple method is presented that solves both issues simultaneously. The 2D formation reaction is taken first to completion, fully consuming excess PbI2. Then, isopropanol is utilized to remove excess organic ligands, control the 2D perovskite thickness, and obtain a phase-pure, n = 2, 2D perovskite. The outcome is a pristine (without residual 2D precursors) and phase-pure 2D perovskite heterostructure with improved surface passivation and charge carrier extraction compared to the conventional solution process. PSCs incorporating this treatment demonstrate a notable improvement in both stability and power conversion efficiency, with negligible hysteresis, compared to the conventional process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信