ASSESSMENT OF THE BIODEGRADABILITY OF POLYLACTIC ACID (PLA) IN FRESHWATER USING EN ISO 14851:2019: CHALLENGES AND OUTCOMES

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Valentina Poli, Maria Cristina Lavagnolo, Marina Basaglia, Tiziano Bonato, Silvia Zanatta, Michele Modesti
{"title":"ASSESSMENT OF THE BIODEGRADABILITY OF POLYLACTIC ACID (PLA) IN FRESHWATER USING EN ISO 14851:2019: CHALLENGES AND OUTCOMES","authors":"Valentina Poli, Maria Cristina Lavagnolo, Marina Basaglia, Tiziano Bonato, Silvia Zanatta, Michele Modesti","doi":"10.1016/j.jhazmat.2025.137974","DOIUrl":null,"url":null,"abstract":"The biodegradability of bioplastics in natural environments remains a highly debated topic within the scientific community. It is assessed primarily using the compostability standard EN 13432, although this, however, does not accurately reflect degradation processes occurring in aquatic environments. To verify the biodegradability of polylactic acid (PLA) in freshwater, two tests, differing only in the inoculum sampling location, were conducted according to EN ISO 14851:2019, measuring oxygen demand. However, to gain a comprehensive understanding, bioplastics biodegradation should be thoroughly investigated at multiple levels beyond oxygen consumption. Additional analyses, including morphological and thermal characterization of polymers and assessment of inoculum characteristics, are fundamental in providing valuable insights into degradation mechanisms. Biodegradability tests revealed low biodegradation rates (44.04% and 23.38%), with no evident weight change in PLA pellets during testing. Analytical techniques (FT-IR, DSC, SEM) indicated negligible visual or structural modifications between virgin and tested pellets. Therefore, under conditions specified by the standard PLA pellets did not undergo significant biodegradation in freshwater. Discrepancies between tests α and β suggested variability due to inoculum quality. A series of challenges persist when implementing this standard, including the lack of a threshold for use in clearly classifying a bioplastic as “biodegradable” and flexibility in selecting process parameters (e.g., test material shape and size, duration, temperature, inoculum percentage). Accordingly, to facilitate a reliable assessment of the biodegradability of bioplastics in freshwater, the EN ISO 14851:2019 standard should be amended and updated.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"197 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137974","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The biodegradability of bioplastics in natural environments remains a highly debated topic within the scientific community. It is assessed primarily using the compostability standard EN 13432, although this, however, does not accurately reflect degradation processes occurring in aquatic environments. To verify the biodegradability of polylactic acid (PLA) in freshwater, two tests, differing only in the inoculum sampling location, were conducted according to EN ISO 14851:2019, measuring oxygen demand. However, to gain a comprehensive understanding, bioplastics biodegradation should be thoroughly investigated at multiple levels beyond oxygen consumption. Additional analyses, including morphological and thermal characterization of polymers and assessment of inoculum characteristics, are fundamental in providing valuable insights into degradation mechanisms. Biodegradability tests revealed low biodegradation rates (44.04% and 23.38%), with no evident weight change in PLA pellets during testing. Analytical techniques (FT-IR, DSC, SEM) indicated negligible visual or structural modifications between virgin and tested pellets. Therefore, under conditions specified by the standard PLA pellets did not undergo significant biodegradation in freshwater. Discrepancies between tests α and β suggested variability due to inoculum quality. A series of challenges persist when implementing this standard, including the lack of a threshold for use in clearly classifying a bioplastic as “biodegradable” and flexibility in selecting process parameters (e.g., test material shape and size, duration, temperature, inoculum percentage). Accordingly, to facilitate a reliable assessment of the biodegradability of bioplastics in freshwater, the EN ISO 14851:2019 standard should be amended and updated.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信