Xi Liu , Chenrui Lan , Zhenhao Yang , Xiaojie Zhuang , Haopeng Feng , Hongbin Wang , Wei Chen , Yangfeng Wu , Jing Tang
{"title":"Enhanced electrokinetic remediation of cadmium contaminated soil by calcium phosphate-modified zeolite as permeable reactive barriers","authors":"Xi Liu , Chenrui Lan , Zhenhao Yang , Xiaojie Zhuang , Haopeng Feng , Hongbin Wang , Wei Chen , Yangfeng Wu , Jing Tang","doi":"10.1016/j.electacta.2025.146057","DOIUrl":null,"url":null,"abstract":"<div><div>Electrokinetic permeable reactive barrier (EK-PRB) is recognized as a prospective technology for the in-situ treatment of heavy metal-contaminated agricultural soils. However, the remediation efficiency is mostly limited by the PRB material. In this study, a calcium phosphate-modified zeolite(Z) adsorption material named Ca<sub>x</sub>(PO<sub>4</sub>)<sub>y</sub>/Z was successfully developed. The morphology and adsorption performance of Cd have been thoroughly explored. The adsorption capacity of Ca<sub>x</sub>(PO<sub>4</sub>)<sub>y</sub>/Z for Cd amounted to 209.97 mg g<sup>−1</sup>, and the fitted adsorption was in agreement with the mechanistic model, suggesting that the adsorption of Ca<sub>x</sub>(PO<sub>4</sub>)<sub>y</sub>/Z on Cd was mainly chemisorption. The fitted adsorption isothermal model showed that the adsorption of Z on cadmium was monolayer adsorption. The synthesized Ca<sub>x</sub>(PO<sub>4</sub>)<sub>y</sub>/Z was used as the adsorption material in EK-PRB to remove cadmium from contaminated agricultural soil. The removal efficiency of Cd is doubled compared to EK, and the energy consumption is reduced by about 147.2 kW·h for 1 g kg<sup>−1</sup> Cd removed. Moreover, the experimental results further confirm its potential for long-term stable application. This work demonstrates the practical feasibility of Ca<sub>x</sub>(PO<sub>4</sub>)<sub>y</sub>/Z as an efficient PRB material in EK-PRB for in-situ remediation of Cd-contaminated soil.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"524 ","pages":"Article 146057"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625004207","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrokinetic permeable reactive barrier (EK-PRB) is recognized as a prospective technology for the in-situ treatment of heavy metal-contaminated agricultural soils. However, the remediation efficiency is mostly limited by the PRB material. In this study, a calcium phosphate-modified zeolite(Z) adsorption material named Cax(PO4)y/Z was successfully developed. The morphology and adsorption performance of Cd have been thoroughly explored. The adsorption capacity of Cax(PO4)y/Z for Cd amounted to 209.97 mg g−1, and the fitted adsorption was in agreement with the mechanistic model, suggesting that the adsorption of Cax(PO4)y/Z on Cd was mainly chemisorption. The fitted adsorption isothermal model showed that the adsorption of Z on cadmium was monolayer adsorption. The synthesized Cax(PO4)y/Z was used as the adsorption material in EK-PRB to remove cadmium from contaminated agricultural soil. The removal efficiency of Cd is doubled compared to EK, and the energy consumption is reduced by about 147.2 kW·h for 1 g kg−1 Cd removed. Moreover, the experimental results further confirm its potential for long-term stable application. This work demonstrates the practical feasibility of Cax(PO4)y/Z as an efficient PRB material in EK-PRB for in-situ remediation of Cd-contaminated soil.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.