Mokshin Suri, Farshid Salimi Jazi, Jack C. Crowley, Youngchan Park, Bing Fu, Peng Chen, Warren R. Zipfel, Buz Barstow, Tobias Hanrath
{"title":"Spatially resolved charge-transfer kinetics at the quantum dot–microbe interface using fluorescence lifetime imaging microscopy","authors":"Mokshin Suri, Farshid Salimi Jazi, Jack C. Crowley, Youngchan Park, Bing Fu, Peng Chen, Warren R. Zipfel, Buz Barstow, Tobias Hanrath","doi":"10.1073/pnas.2407987122","DOIUrl":null,"url":null,"abstract":"Integrating the optoelectronic properties of quantum dots (QDs) with biological enzymatic systems to form microbe-semiconductor biohybrids offers promising prospects for both solar-to-chemical conversion and light-modulated biochemical processes. Developing these nano–bio hybrid systems necessitates a deep understanding of charge-transfer dynamics at the nano–bio interface. Photoexcited carrier transfer from QDs to microbes is driven by complex interactions, with emerging insights into the relevant thermodynamic and kinetic factors. The heterogeneities of both microbes and QD ensembles pose significant challenges in mechanistic understanding, which is critical for designing advanced nano–bio hybrids. We used fluorescence lifetime imaging microscopy to analyze charge transfer between a CdSe QD film and <jats:italic>Shewanella oneidensis</jats:italic> microbes. We correlated the spatiotemporal fluorescence data with an analytical model. Our analysis revealed two distinct distributions of QD de-excitation pathways. The characteristics of these distributions: 1) a faster transfer rate ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mover accent=\"true\"> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1.5</mml:mn> <mml:mo> </mml:mo> <mml:mfenced close=\")\" open=\"(\" separators=\"\"> <mml:mrow> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>9</mml:mn> </mml:msup> </mml:mrow> </mml:mfenced> <mml:mo> </mml:mo> <mml:msup> <mml:mi mathvariant=\"normal\">s</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> </jats:inline-formula> ), with a lower acceptor number ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msub> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mrow> </mml:mover> <mml:mrow> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0.03</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> ) and 2) a slower transfer rate ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mover accent=\"true\"> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>4.1</mml:mn> <mml:mo> </mml:mo> <mml:mfenced close=\")\" open=\"(\" separators=\"\"> <mml:mrow> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>8</mml:mn> </mml:msup> </mml:mrow> </mml:mfenced> <mml:mo> </mml:mo> <mml:msup> <mml:mi mathvariant=\"normal\">s</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> </jats:inline-formula> ) with a higher acceptor number ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msub> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mrow> </mml:mover> <mml:mrow> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0.18</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> ). We assign these distributions to the indirect and direct electron transfer mechanisms, respectively. Our findings demonstrate how spectroscopic imaging can uncover fundamental electron transfer mechanisms at complex interfaces, offering valuable design principles for future nano–bio hybrids.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"55 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2407987122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating the optoelectronic properties of quantum dots (QDs) with biological enzymatic systems to form microbe-semiconductor biohybrids offers promising prospects for both solar-to-chemical conversion and light-modulated biochemical processes. Developing these nano–bio hybrid systems necessitates a deep understanding of charge-transfer dynamics at the nano–bio interface. Photoexcited carrier transfer from QDs to microbes is driven by complex interactions, with emerging insights into the relevant thermodynamic and kinetic factors. The heterogeneities of both microbes and QD ensembles pose significant challenges in mechanistic understanding, which is critical for designing advanced nano–bio hybrids. We used fluorescence lifetime imaging microscopy to analyze charge transfer between a CdSe QD film and Shewanella oneidensis microbes. We correlated the spatiotemporal fluorescence data with an analytical model. Our analysis revealed two distinct distributions of QD de-excitation pathways. The characteristics of these distributions: 1) a faster transfer rate ( k¯ET1=1.5109s-1 ), with a lower acceptor number ( N¯a1=0.03 ) and 2) a slower transfer rate ( k¯ET2=4.1108s-1 ) with a higher acceptor number ( N¯a2=0.18 ). We assign these distributions to the indirect and direct electron transfer mechanisms, respectively. Our findings demonstrate how spectroscopic imaging can uncover fundamental electron transfer mechanisms at complex interfaces, offering valuable design principles for future nano–bio hybrids.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.