Spatially resolved charge-transfer kinetics at the quantum dot–microbe interface using fluorescence lifetime imaging microscopy

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mokshin Suri, Farshid Salimi Jazi, Jack C. Crowley, Youngchan Park, Bing Fu, Peng Chen, Warren R. Zipfel, Buz Barstow, Tobias Hanrath
{"title":"Spatially resolved charge-transfer kinetics at the quantum dot–microbe interface using fluorescence lifetime imaging microscopy","authors":"Mokshin Suri, Farshid Salimi Jazi, Jack C. Crowley, Youngchan Park, Bing Fu, Peng Chen, Warren R. Zipfel, Buz Barstow, Tobias Hanrath","doi":"10.1073/pnas.2407987122","DOIUrl":null,"url":null,"abstract":"Integrating the optoelectronic properties of quantum dots (QDs) with biological enzymatic systems to form microbe-semiconductor biohybrids offers promising prospects for both solar-to-chemical conversion and light-modulated biochemical processes. Developing these nano–bio hybrid systems necessitates a deep understanding of charge-transfer dynamics at the nano–bio interface. Photoexcited carrier transfer from QDs to microbes is driven by complex interactions, with emerging insights into the relevant thermodynamic and kinetic factors. The heterogeneities of both microbes and QD ensembles pose significant challenges in mechanistic understanding, which is critical for designing advanced nano–bio hybrids. We used fluorescence lifetime imaging microscopy to analyze charge transfer between a CdSe QD film and <jats:italic>Shewanella oneidensis</jats:italic> microbes. We correlated the spatiotemporal fluorescence data with an analytical model. Our analysis revealed two distinct distributions of QD de-excitation pathways. The characteristics of these distributions: 1) a faster transfer rate ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mover accent=\"true\"> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1.5</mml:mn> <mml:mo> </mml:mo> <mml:mfenced close=\")\" open=\"(\" separators=\"\"> <mml:mrow> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>9</mml:mn> </mml:msup> </mml:mrow> </mml:mfenced> <mml:mo> </mml:mo> <mml:msup> <mml:mi mathvariant=\"normal\">s</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> </jats:inline-formula> ), with a lower acceptor number ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msub> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mrow> </mml:mover> <mml:mrow> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0.03</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> ) and 2) a slower transfer rate ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mover accent=\"true\"> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>4.1</mml:mn> <mml:mo> </mml:mo> <mml:mfenced close=\")\" open=\"(\" separators=\"\"> <mml:mrow> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>8</mml:mn> </mml:msup> </mml:mrow> </mml:mfenced> <mml:mo> </mml:mo> <mml:msup> <mml:mi mathvariant=\"normal\">s</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> </jats:inline-formula> ) with a higher acceptor number ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msub> <mml:mover accent=\"true\"> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mrow> </mml:mover> <mml:mrow> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0.18</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> ). We assign these distributions to the indirect and direct electron transfer mechanisms, respectively. Our findings demonstrate how spectroscopic imaging can uncover fundamental electron transfer mechanisms at complex interfaces, offering valuable design principles for future nano–bio hybrids.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"55 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2407987122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating the optoelectronic properties of quantum dots (QDs) with biological enzymatic systems to form microbe-semiconductor biohybrids offers promising prospects for both solar-to-chemical conversion and light-modulated biochemical processes. Developing these nano–bio hybrid systems necessitates a deep understanding of charge-transfer dynamics at the nano–bio interface. Photoexcited carrier transfer from QDs to microbes is driven by complex interactions, with emerging insights into the relevant thermodynamic and kinetic factors. The heterogeneities of both microbes and QD ensembles pose significant challenges in mechanistic understanding, which is critical for designing advanced nano–bio hybrids. We used fluorescence lifetime imaging microscopy to analyze charge transfer between a CdSe QD film and Shewanella oneidensis microbes. We correlated the spatiotemporal fluorescence data with an analytical model. Our analysis revealed two distinct distributions of QD de-excitation pathways. The characteristics of these distributions: 1) a faster transfer rate ( k ¯ E T 1 = 1.5 10 9 s - 1 ), with a lower acceptor number ( N ¯ a 1 = 0.03 ) and 2) a slower transfer rate ( k ¯ E T 2 = 4.1 10 8 s - 1 ) with a higher acceptor number ( N ¯ a 2 = 0.18 ). We assign these distributions to the indirect and direct electron transfer mechanisms, respectively. Our findings demonstrate how spectroscopic imaging can uncover fundamental electron transfer mechanisms at complex interfaces, offering valuable design principles for future nano–bio hybrids.
利用荧光寿命成像显微镜研究量子点-微生物界面的空间分辨电荷转移动力学
将量子点(QDs)的光电特性与生物酶系统相结合,形成微生物-半导体生物杂化体,在太阳能-化学转化和光调制生化过程中都有很好的前景。开发这些纳米生物混合系统需要对纳米生物界面上的电荷传递动力学有深刻的理解。从量子点到微生物的光激发载流子转移是由复杂的相互作用驱动的,对相关的热力学和动力学因素有了新的认识。微生物和量子点集成的异质性对机理理解提出了重大挑战,这对于设计先进的纳米生物杂交体至关重要。我们使用荧光寿命成像显微镜分析了CdSe QD膜和希瓦氏菌之间的电荷转移。我们将时空荧光数据与分析模型相关联。我们的分析揭示了两种不同的量子点去激发途径的分布。这些分布的特征是:1)接收数较低(N¯a 1 = 0.03),传输速率较快(k¯E T 1 = 1.5 10 9 s - 1); 2)接收数较高(N¯a 2 = 0.18),传输速率较慢(k¯E T 2 = 4.1 10 8 s - 1)。我们将这些分布分别分配给间接和直接电子转移机制。我们的研究结果展示了光谱成像如何揭示复杂界面上的基本电子转移机制,为未来的纳米生物杂交体提供了有价值的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信