Felix Binkowski, Fridtjof Betz, Martin Hammerschmidt, Lin Zschiedrich, Sven Burger
{"title":"Resonance modes in microstructured photonic waveguides: efficient and accurate computation based on AAA rational approximation","authors":"Felix Binkowski, Fridtjof Betz, Martin Hammerschmidt, Lin Zschiedrich, Sven Burger","doi":"10.1515/nanoph-2024-0755","DOIUrl":null,"url":null,"abstract":"We present a framework for the efficient and accurate computation of resonance modes in photonic waveguides. The framework is based on AAA rational approximation with the application of special light sources. It allows one to calculate only relevant modes, such as the fundamental resonance modes localized in the central core of the waveguides. We demonstrate the framework using an example from the literature, a hollow-core photonic crystal fiber. This waveguide supports many other modes, such as cladding modes and higher-order modes. These nonrelevant modes are not calculated, so that challenging post-processing with mode filtering is not required.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"1 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0755","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a framework for the efficient and accurate computation of resonance modes in photonic waveguides. The framework is based on AAA rational approximation with the application of special light sources. It allows one to calculate only relevant modes, such as the fundamental resonance modes localized in the central core of the waveguides. We demonstrate the framework using an example from the literature, a hollow-core photonic crystal fiber. This waveguide supports many other modes, such as cladding modes and higher-order modes. These nonrelevant modes are not calculated, so that challenging post-processing with mode filtering is not required.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.