Yupeng Li, Haodong Liu, Lei Huo, Mingkai Lei, Akhlesh Lakhtakia
{"title":"Compositional-Asymmetry-Induced Transition of Directional Liquid Transport on Tilted and Janusian Nanohair Arrays","authors":"Yupeng Li, Haodong Liu, Lei Huo, Mingkai Lei, Akhlesh Lakhtakia","doi":"10.1021/acsami.4c23088","DOIUrl":null,"url":null,"abstract":"Anisotropic wetting on certain surfaces endowed with structural asymmetry or compositional gradients commonly impedes the directional adjustment of liquid transport. We report here that directional liquid transport (DLT) against the tilt direction of nanohair and in the reverse direction was achieved on tilted-nanohair arrays (TNAs) and tilted-Janusian-nanohair arrays (TJNAs), respectively. Janusian compositional asymmetry on the surface of TJNAs was created by plasma polymer deposition on structurally asymmetric TNAs previously fabricated by Faraday-cage-assisted plasma nanotexturing. The structurally asymmetric TNAs led to DLT against the tilting direction due to the asymmetric wetting under the capillary imbibition between tilted nanohairs and the preferential coalescence of liquid against the tilt direction. The Janusian compositional asymmetry of TJNAs changing the capillarity imbibition condition between tilted nanohairs resulted in the transition of the liquid spreading direction along the tilt direction. The spreading direction along and against the tilt direction is predicted through a comprehensive analysis of the structural and compositional asymmetries of the TNAs and TJNAs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"55 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c23088","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anisotropic wetting on certain surfaces endowed with structural asymmetry or compositional gradients commonly impedes the directional adjustment of liquid transport. We report here that directional liquid transport (DLT) against the tilt direction of nanohair and in the reverse direction was achieved on tilted-nanohair arrays (TNAs) and tilted-Janusian-nanohair arrays (TJNAs), respectively. Janusian compositional asymmetry on the surface of TJNAs was created by plasma polymer deposition on structurally asymmetric TNAs previously fabricated by Faraday-cage-assisted plasma nanotexturing. The structurally asymmetric TNAs led to DLT against the tilting direction due to the asymmetric wetting under the capillary imbibition between tilted nanohairs and the preferential coalescence of liquid against the tilt direction. The Janusian compositional asymmetry of TJNAs changing the capillarity imbibition condition between tilted nanohairs resulted in the transition of the liquid spreading direction along the tilt direction. The spreading direction along and against the tilt direction is predicted through a comprehensive analysis of the structural and compositional asymmetries of the TNAs and TJNAs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.