Small Twist Angles Accelerate Electron and Hole Transfer in MoSe2/WSe2 Heterostructures

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-03-18 DOI:10.1021/acsnano.4c18675
Yan Zeng, Zhenwei Ou, Zhe Li, Cheng Wang, Jiakai Yan, Wenbo Li, Yan Li, Wei Dai, Huiting Zhang, Takashi Taniguchi, Kenji Watanabe, Haoqing Jiang, Hongli Guo, Gang Lu, Tong Zhu, Ti Wang, Hongxing Xu
{"title":"Small Twist Angles Accelerate Electron and Hole Transfer in MoSe2/WSe2 Heterostructures","authors":"Yan Zeng, Zhenwei Ou, Zhe Li, Cheng Wang, Jiakai Yan, Wenbo Li, Yan Li, Wei Dai, Huiting Zhang, Takashi Taniguchi, Kenji Watanabe, Haoqing Jiang, Hongli Guo, Gang Lu, Tong Zhu, Ti Wang, Hongxing Xu","doi":"10.1021/acsnano.4c18675","DOIUrl":null,"url":null,"abstract":"Van der Waals (vdW) heterostructures host interlayer excitons that act as robust carriers of valley information and sensitive probes of strongly correlated electronic phases. The formation and properties of these interlayer excitons critically depend on efficient charge transfer across the heterointerface. Among the various factors influencing these processes, the twist angle emerges as a key degree of freedom, allowing precise modulation of the stacking configuration and electronic band structure of the heterostructure. In this study, we perform ultrafast pump–probe measurements on MoSe<sub>2</sub>/WSe<sub>2</sub> heterostructures with various twist angles. Counterintuitively, the results show that both electron and hole transfer rates are strongly influenced by twist angles, peaking at 0 and 60° twist angles, respectively. Theoretical calculations indicate that this behavior stems from reduced valley energy offsets and enhanced interlayer hybridization at small twist angles, which collectively promotes more efficient electron and hole transfer. Our findings demonstrate the influence of twist-angle engineering on interfacial carrier dynamics and its impact on the optoelectronic properties of vdW heterostructures.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"183 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18675","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Van der Waals (vdW) heterostructures host interlayer excitons that act as robust carriers of valley information and sensitive probes of strongly correlated electronic phases. The formation and properties of these interlayer excitons critically depend on efficient charge transfer across the heterointerface. Among the various factors influencing these processes, the twist angle emerges as a key degree of freedom, allowing precise modulation of the stacking configuration and electronic band structure of the heterostructure. In this study, we perform ultrafast pump–probe measurements on MoSe2/WSe2 heterostructures with various twist angles. Counterintuitively, the results show that both electron and hole transfer rates are strongly influenced by twist angles, peaking at 0 and 60° twist angles, respectively. Theoretical calculations indicate that this behavior stems from reduced valley energy offsets and enhanced interlayer hybridization at small twist angles, which collectively promotes more efficient electron and hole transfer. Our findings demonstrate the influence of twist-angle engineering on interfacial carrier dynamics and its impact on the optoelectronic properties of vdW heterostructures.

Abstract Image

小扭角加速MoSe2/WSe2异质结构中的电子和空穴转移
范德华(vdW)异质结构承载层间激子,作为谷信息的鲁棒载体和强相关电子相的敏感探针。这些层间激子的形成和性质严重依赖于通过异质界面的有效电荷转移。在影响这些过程的众多因素中,扭转角是一个关键的自由度,可以精确调制异质结构的堆叠构型和电子能带结构。在这项研究中,我们对不同扭转角度的MoSe2/WSe2异质结构进行了超快泵浦探针测量。与直觉相反的是,结果表明电子和空穴转移速率都受到扭转角的强烈影响,分别在扭转角为0°和60°时达到峰值。理论计算表明,这种行为源于在小扭角下减少的谷能偏移和增强的层间杂化,它们共同促进了更有效的电子和空穴转移。我们的研究结果证明了扭转角工程对界面载流子动力学的影响及其对vdW异质结构光电性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信