Xuelian Kang, Kaixin Jiang, Shengbo Ge, Kexin Wei, Yihui Zhou, Ben Bin Xu, Kui Wang, Xuehua Zhang
{"title":"Frontier in Advanced Luminescent Biomass Nanocomposites for Surface Anticounterfeiting","authors":"Xuelian Kang, Kaixin Jiang, Shengbo Ge, Kexin Wei, Yihui Zhou, Ben Bin Xu, Kui Wang, Xuehua Zhang","doi":"10.1021/acsnano.4c17883","DOIUrl":null,"url":null,"abstract":"Biomass-based luminescent nanocomposites have garnered significant attention due to their renewable, biocompatible, and environmentally sustainable characteristics for ensuring information encryption and security. Nanomaterials are central to this development, as their high surface area, tunable optical properties, and nanoscale structural advantages enable enhanced luminescent efficiency, stability, and adaptability in diverse conditions. This review delves into the principles of luminescence, focusing on the inherent bioluminescent properties of natural materials, the utilization of biomass as precursors for carbon dots (CDs) and aggregation-induced emission (AIE)-enhanced substances, and the structural and functional optimization of luminescent materials. The role of cellulose nanocrystals (CNC), lignin, and chitosan as key biomass-derived nanomaterials will be highlighted, alongside surface and interfacial engineering strategies that further improve material performance. Recent advancements in the synthesis of biomass carbon dots and their integration into luminescent anticounterfeiting systems are discussed in detail. Furthermore, the integration of advanced artificial intelligence (AI) technologies is explored, emphasizing their potential to revolutionize luminescent anticounterfeiting. Current challenges, including scalability, waste minimization, and performance optimization, are critically examined. Finally, the review outlines future research directions, including the application of AI-driven methodologies and the exploration of unconventional luminescent biomass materials, to accelerate the development of high-performance, eco-friendly anticounterfeiting solutions.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"69 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17883","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass-based luminescent nanocomposites have garnered significant attention due to their renewable, biocompatible, and environmentally sustainable characteristics for ensuring information encryption and security. Nanomaterials are central to this development, as their high surface area, tunable optical properties, and nanoscale structural advantages enable enhanced luminescent efficiency, stability, and adaptability in diverse conditions. This review delves into the principles of luminescence, focusing on the inherent bioluminescent properties of natural materials, the utilization of biomass as precursors for carbon dots (CDs) and aggregation-induced emission (AIE)-enhanced substances, and the structural and functional optimization of luminescent materials. The role of cellulose nanocrystals (CNC), lignin, and chitosan as key biomass-derived nanomaterials will be highlighted, alongside surface and interfacial engineering strategies that further improve material performance. Recent advancements in the synthesis of biomass carbon dots and their integration into luminescent anticounterfeiting systems are discussed in detail. Furthermore, the integration of advanced artificial intelligence (AI) technologies is explored, emphasizing their potential to revolutionize luminescent anticounterfeiting. Current challenges, including scalability, waste minimization, and performance optimization, are critically examined. Finally, the review outlines future research directions, including the application of AI-driven methodologies and the exploration of unconventional luminescent biomass materials, to accelerate the development of high-performance, eco-friendly anticounterfeiting solutions.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.