Mei-Ching Yu , Chi-Jen Lo , Wei-Cheng Lin , Wei-Lun Yen , Yun-Yu Hsieh , Bing-Hong Chen , Fu-Sung Lo
{"title":"Pixel array-based urine biosensor for detection of trimethylamine N-oxide and glucose for early detection of diabetic kidney disease","authors":"Mei-Ching Yu , Chi-Jen Lo , Wei-Cheng Lin , Wei-Lun Yen , Yun-Yu Hsieh , Bing-Hong Chen , Fu-Sung Lo","doi":"10.1016/j.aca.2025.343951","DOIUrl":null,"url":null,"abstract":"<div><div>Trimethylamine N-oxide (TMAO) serves as a crucial biomarker for early detection and prevention of cardiovascular and chronic kidney diseases. In this study, we design and implement a novel pixel array-based urine biosensor to explore the relationship between TMAO levels and glucose in urine and the urine albumin-creatinine ratio (UACR). The urine biosensor, incorporating a specialized readout circuit, measures TMAO across various UACR ranges, revealing a linear correlation with a slope of 8.5 mV per mg/g up to 1100 mg/g UACR. Although glucose levels also rise with UACR, significant discrepancies occur beyond 30 mg/g, indicating that glucose does not consistently correlate with UACR increases. The biosensor demonstrates a sensitivity of 41 ADC counts/μM (4.5 mV/μM), a 10-s response time, 98 % reproducibility, and a drift of 0.3 mV over extended periods. It requires only 5 μL of urine for a comprehensive analysis of TMAO and glucose. This approach significantly improves time efficiency, offering a faster and more convenient solution for monitoring the risk for chronic kidney disease, such as those with diabetes.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1353 ","pages":"Article 343951"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025003459","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Trimethylamine N-oxide (TMAO) serves as a crucial biomarker for early detection and prevention of cardiovascular and chronic kidney diseases. In this study, we design and implement a novel pixel array-based urine biosensor to explore the relationship between TMAO levels and glucose in urine and the urine albumin-creatinine ratio (UACR). The urine biosensor, incorporating a specialized readout circuit, measures TMAO across various UACR ranges, revealing a linear correlation with a slope of 8.5 mV per mg/g up to 1100 mg/g UACR. Although glucose levels also rise with UACR, significant discrepancies occur beyond 30 mg/g, indicating that glucose does not consistently correlate with UACR increases. The biosensor demonstrates a sensitivity of 41 ADC counts/μM (4.5 mV/μM), a 10-s response time, 98 % reproducibility, and a drift of 0.3 mV over extended periods. It requires only 5 μL of urine for a comprehensive analysis of TMAO and glucose. This approach significantly improves time efficiency, offering a faster and more convenient solution for monitoring the risk for chronic kidney disease, such as those with diabetes.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.