T. S. Breure, D. De Rosa, P. Panagos, M. F. Cotrufo, A. Jones, E. Lugato
{"title":"Revisiting the soil carbon saturation concept to inform a risk index in European agricultural soils","authors":"T. S. Breure, D. De Rosa, P. Panagos, M. F. Cotrufo, A. Jones, E. Lugato","doi":"10.1038/s41467-025-57355-y","DOIUrl":null,"url":null,"abstract":"<p>The form in which soil organic carbon (SOC) is stored determines its capacity and stability, commonly described by separating bulk SOC into its particulate- (POC) and mineral-associated (MAOC) constituents. MAOC is more persistent, but the association with mineral surfaces imposes a maximum MAOC capacity for a given fine fraction content. Here, we leverage SOC fraction data and spectroscopy to investigate POC/MAOC distribution, together with SOC changes data over 2009–2018 period, across pedo-climatic zones in the European Union and the UK. We find that rather than a universal mineralogy- dependent maximum MAOC capacity, an emergent effective MAOC capacity can be identified across pedo-climatic zones. These findings led us to propose the SOC risk index, combining SOC changes and effective MAOC capacity. We find that between 43 and 83 Mha of agricultural soils are classified as high risk, mostly constrained to cool and humid regions. The index provides a synthetic information to decision makers for preserving and accruing POC and MAOC.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"43 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57355-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The form in which soil organic carbon (SOC) is stored determines its capacity and stability, commonly described by separating bulk SOC into its particulate- (POC) and mineral-associated (MAOC) constituents. MAOC is more persistent, but the association with mineral surfaces imposes a maximum MAOC capacity for a given fine fraction content. Here, we leverage SOC fraction data and spectroscopy to investigate POC/MAOC distribution, together with SOC changes data over 2009–2018 period, across pedo-climatic zones in the European Union and the UK. We find that rather than a universal mineralogy- dependent maximum MAOC capacity, an emergent effective MAOC capacity can be identified across pedo-climatic zones. These findings led us to propose the SOC risk index, combining SOC changes and effective MAOC capacity. We find that between 43 and 83 Mha of agricultural soils are classified as high risk, mostly constrained to cool and humid regions. The index provides a synthetic information to decision makers for preserving and accruing POC and MAOC.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.