Characterization and differentiation of aluminum powders used in improvised explosive devices-Part 3: Comparison of statistical analysis methods.

Danica M Ommen, Christopher P Saunders, JoAnn Buscaglia
{"title":"Characterization and differentiation of aluminum powders used in improvised explosive devices-Part 3: Comparison of statistical analysis methods.","authors":"Danica M Ommen, Christopher P Saunders, JoAnn Buscaglia","doi":"10.1111/1556-4029.70010","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the extent to which sources of aluminum (Al) powders, often used as fuel in improvised explosive devices (IEDs), can be differentiated is important for forensic investigations and gathering intelligence. Previous work developed effective methods of characterizing Al powders using micromorphometric features of the Al particles and a multistage sampling approach. Since then, ~100 additional samples from Al powder sources representing five powder types used in IEDs and 33 product distributors have been added to the dataset. Using this large dataset, a study confirmed that 200 randomly selected fields of view (FOV) are needed to accurately characterize the powder. Three different statistical methods, each using a different method of summarizing the large volumes of data, are used: a modified Wasserstein distance score nearest neighbor classifier for the FOV means, an ASTM-style match interval for means of the FOV means, and a linear discriminant analysis for the means of means of means. Two of the methods classify each questioned subsample to an Al powder sample, whereas the ASTM-style method classifies questioned/known-source subsample pairs as matching or non-matching. All three classifiers show that Al powder sources can be discriminated, although samples of the same powder type or made of Al products from the same distributor are often confused. Analysis of Al powder samples from three casework IEDs shows they were likely made using Al powder from Al-containing paint products. These results are integral to closed-set classification of Al powders where the source of a questioned subsample is contained in the database.</p>","PeriodicalId":94080,"journal":{"name":"Journal of forensic sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1556-4029.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the extent to which sources of aluminum (Al) powders, often used as fuel in improvised explosive devices (IEDs), can be differentiated is important for forensic investigations and gathering intelligence. Previous work developed effective methods of characterizing Al powders using micromorphometric features of the Al particles and a multistage sampling approach. Since then, ~100 additional samples from Al powder sources representing five powder types used in IEDs and 33 product distributors have been added to the dataset. Using this large dataset, a study confirmed that 200 randomly selected fields of view (FOV) are needed to accurately characterize the powder. Three different statistical methods, each using a different method of summarizing the large volumes of data, are used: a modified Wasserstein distance score nearest neighbor classifier for the FOV means, an ASTM-style match interval for means of the FOV means, and a linear discriminant analysis for the means of means of means. Two of the methods classify each questioned subsample to an Al powder sample, whereas the ASTM-style method classifies questioned/known-source subsample pairs as matching or non-matching. All three classifiers show that Al powder sources can be discriminated, although samples of the same powder type or made of Al products from the same distributor are often confused. Analysis of Al powder samples from three casework IEDs shows they were likely made using Al powder from Al-containing paint products. These results are integral to closed-set classification of Al powders where the source of a questioned subsample is contained in the database.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信