Analysis of N,N-dimethyltryptamine (DMT) and its metabolites using LC-MS/MS for forensic purposes.

Munchelou M Gomonit, Madeleine J Swortwood, Michael T Truver, Britni N Skillman
{"title":"Analysis of N,N-dimethyltryptamine (DMT) and its metabolites using LC-MS/MS for forensic purposes.","authors":"Munchelou M Gomonit, Madeleine J Swortwood, Michael T Truver, Britni N Skillman","doi":"10.1111/1556-4029.70013","DOIUrl":null,"url":null,"abstract":"<p><p>Ayahuasca contains N,N-dimethyltryptamine (DMT), the primary alkaloid responsible for its psychedelic effects. DMT oxidative deamination yields indole-3-acetic acid (IAA) as the predominant metabolite, while N-oxidation produces N,N-dimethyltryptamine-N-oxide (DMT-NO) as the second most abundant metabolite. An LC-MS/MS method was developed and validated to quantify DMT, IAA, and DMT-NO in human plasma, as well as DMT and DMT-NO in human urine. Protein precipitation using a 75:25 (v/v) acetonitrile:methanol yielded analyte recoveries ≥91% in both plasma and urine. Key parameters including matrix effects, linearity, bias, precision, stability, carryover, and dilution integrity met their respective acceptability criterion outlined by ANSI/ASB 036 recommendations. In plasma, the linear range was 0.5-500 ng/mL (DMT), 0.25-125 ng/mL (DMT-NO), and 240-6000 ng/mL (IAA), while the DMT and DMT-NO range in urine was 2.5-250 ng/mL. Bias was within ±17.5%, and precision was ≤6.4% in both plasma and urine. Analytes were free from exogenous/endogenous interferences, and carryover was negligible. Extracts were also stable in the autosampler compartment (4°C) for 48 hours. A proof-of-concept study was conducted using authentic paired peripheral blood and urine samples. Results showed higher concentrations of DMT and DMT-NO found in urine as compared to plasma, highlighting the rapid metabolism and clearance of DMT and its metabolites. This study proposes the utility of DMT and DMT-NO as direct and distinctive biomarkers for forensic determination of exogenous DMT consumption. While IAA is the predominant metabolite of DMT, IAA should not be relied upon as the sole biomarker due to its substantial endogenous presence in both plasma and urine.</p>","PeriodicalId":94080,"journal":{"name":"Journal of forensic sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1556-4029.70013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ayahuasca contains N,N-dimethyltryptamine (DMT), the primary alkaloid responsible for its psychedelic effects. DMT oxidative deamination yields indole-3-acetic acid (IAA) as the predominant metabolite, while N-oxidation produces N,N-dimethyltryptamine-N-oxide (DMT-NO) as the second most abundant metabolite. An LC-MS/MS method was developed and validated to quantify DMT, IAA, and DMT-NO in human plasma, as well as DMT and DMT-NO in human urine. Protein precipitation using a 75:25 (v/v) acetonitrile:methanol yielded analyte recoveries ≥91% in both plasma and urine. Key parameters including matrix effects, linearity, bias, precision, stability, carryover, and dilution integrity met their respective acceptability criterion outlined by ANSI/ASB 036 recommendations. In plasma, the linear range was 0.5-500 ng/mL (DMT), 0.25-125 ng/mL (DMT-NO), and 240-6000 ng/mL (IAA), while the DMT and DMT-NO range in urine was 2.5-250 ng/mL. Bias was within ±17.5%, and precision was ≤6.4% in both plasma and urine. Analytes were free from exogenous/endogenous interferences, and carryover was negligible. Extracts were also stable in the autosampler compartment (4°C) for 48 hours. A proof-of-concept study was conducted using authentic paired peripheral blood and urine samples. Results showed higher concentrations of DMT and DMT-NO found in urine as compared to plasma, highlighting the rapid metabolism and clearance of DMT and its metabolites. This study proposes the utility of DMT and DMT-NO as direct and distinctive biomarkers for forensic determination of exogenous DMT consumption. While IAA is the predominant metabolite of DMT, IAA should not be relied upon as the sole biomarker due to its substantial endogenous presence in both plasma and urine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信