Coherence-Based Graph Convolution Network to Assess Brain Reorganization in Spinal Cord Injury Patients.

International journal of neural systems Pub Date : 2025-05-01 Epub Date: 2025-03-15 DOI:10.1142/S0129065725500212
Jiancai Leng, Jiaqi Zhao, Yongjian Wu, Chengyan Lv, Zhixiao Lun, Yanzi Li, Chao Zhang, Bin Zhang, Yang Zhang, Fangzhou Xu, Changsong Yi, Tzyy-Ping Jung
{"title":"Coherence-Based Graph Convolution Network to Assess Brain Reorganization in Spinal Cord Injury Patients.","authors":"Jiancai Leng, Jiaqi Zhao, Yongjian Wu, Chengyan Lv, Zhixiao Lun, Yanzi Li, Chao Zhang, Bin Zhang, Yang Zhang, Fangzhou Xu, Changsong Yi, Tzyy-Ping Jung","doi":"10.1142/S0129065725500212","DOIUrl":null,"url":null,"abstract":"<p><p>Motor imagery (MI) engages a broad network of brain regions to imagine a specific action. Investigating the mechanism of brain network reorganization during MI after spinal cord injury (SCI) is crucial because it reflects overall brain activity. Using electroencephalogram (EEG) data from SCI patients, we conducted EEG-based coherence analysis to examine different brain network reorganizations across different frequency bands, from resting to MI. Furthermore, we introduced a consistency calculation-based residual graph convolution (C-ResGCN) classification algorithm. The results show that the [Formula: see text]- and [Formula: see text]-band connectivity weakens, and brain activity decreases during the MI task compared to the resting state. In contrast, the [Formula: see text]-band connectivity increases in motor regions while the default mode network activity declines during MI. Our C-ResGCN algorithm showed excellent performance, achieving a maximum classification accuracy of 96.25%, highlighting its reliability and stability. These findings suggest that brain reorganization in SCI patients reallocates relevant brain resources from the resting state to MI, and effective network reorganization correlates with improved MI performance. This study offers new insights into the mechanisms of MI and potential biomarkers for evaluating rehabilitation outcomes in patients with SCI.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550021"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motor imagery (MI) engages a broad network of brain regions to imagine a specific action. Investigating the mechanism of brain network reorganization during MI after spinal cord injury (SCI) is crucial because it reflects overall brain activity. Using electroencephalogram (EEG) data from SCI patients, we conducted EEG-based coherence analysis to examine different brain network reorganizations across different frequency bands, from resting to MI. Furthermore, we introduced a consistency calculation-based residual graph convolution (C-ResGCN) classification algorithm. The results show that the [Formula: see text]- and [Formula: see text]-band connectivity weakens, and brain activity decreases during the MI task compared to the resting state. In contrast, the [Formula: see text]-band connectivity increases in motor regions while the default mode network activity declines during MI. Our C-ResGCN algorithm showed excellent performance, achieving a maximum classification accuracy of 96.25%, highlighting its reliability and stability. These findings suggest that brain reorganization in SCI patients reallocates relevant brain resources from the resting state to MI, and effective network reorganization correlates with improved MI performance. This study offers new insights into the mechanisms of MI and potential biomarkers for evaluating rehabilitation outcomes in patients with SCI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信