Dominik Kodada , Dominik Hadžega , Patrik Krumpolec , Nikola Janoštiaková , Gabriela Bľandová , Pavol Janega , Zuzana Ballová , Erik Dosedla , Gabriel Minárik , Vanda Repiská
{"title":"Differential gene expression in uterine endometrioid cancer cells and adjusted normal tissue","authors":"Dominik Kodada , Dominik Hadžega , Patrik Krumpolec , Nikola Janoštiaková , Gabriela Bľandová , Pavol Janega , Zuzana Ballová , Erik Dosedla , Gabriel Minárik , Vanda Repiská","doi":"10.1016/j.mcp.2025.102027","DOIUrl":null,"url":null,"abstract":"<div><div>Endometrial cancer is a significant public health concern with rising incidence rates globally. Understanding the molecular mechanisms underlying this disease is crucial for developing effective therapeutic strategies. Our study aimed to characterize transcriptional changes in endometrial cancer tissues compared to adjusted healthy tissue. Using RNA sequencing, we identified 2483 differentially expressed genes (DEGs), including protein-coding genes, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). Notably, several known cancer-related genes were differentially expressed, such as <em>MYC</em>, <em>AKT3</em>, <em>CCND1</em>, and <em>CDKN2A</em>. Pathway analysis revealed significant alterations in cell cycle regulation, several signaling pathways, and metabolic processes. These findings provide valuable insights into the molecular pathways dysregulated in endometrial cancer. Our results may contribute to the development of novel therapeutic targets and biomarkers for this disease.</div></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"81 ","pages":"Article 102027"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850825000209","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Endometrial cancer is a significant public health concern with rising incidence rates globally. Understanding the molecular mechanisms underlying this disease is crucial for developing effective therapeutic strategies. Our study aimed to characterize transcriptional changes in endometrial cancer tissues compared to adjusted healthy tissue. Using RNA sequencing, we identified 2483 differentially expressed genes (DEGs), including protein-coding genes, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). Notably, several known cancer-related genes were differentially expressed, such as MYC, AKT3, CCND1, and CDKN2A. Pathway analysis revealed significant alterations in cell cycle regulation, several signaling pathways, and metabolic processes. These findings provide valuable insights into the molecular pathways dysregulated in endometrial cancer. Our results may contribute to the development of novel therapeutic targets and biomarkers for this disease.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.