Quantile regression under dependent censoring with unknown association.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Myrthe D'Haen, Ingrid Van Keilegom, Anneleen Verhasselt
{"title":"Quantile regression under dependent censoring with unknown association.","authors":"Myrthe D'Haen, Ingrid Van Keilegom, Anneleen Verhasselt","doi":"10.1007/s10985-025-09647-0","DOIUrl":null,"url":null,"abstract":"<p><p>The study of survival data often requires taking proper care of the censoring mechanism that prohibits complete observation of the data. Under right censoring, only the first occurring event is observed: either the event of interest, or a competing event like withdrawal of a subject from the study. The corresponding identifiability difficulties led many authors to imposing (conditional) independence or a fully known dependence between survival and censoring times, both of which are not always realistic. However, recent results in survival literature showed that parametric copula models allow identification of all model parameters, including the association parameter, under appropriately chosen marginal distributions. The present paper is the first one to apply such models in a quantile regression context, hence benefiting from its well-known advantages in terms of e.g. robustness and richer inference results. The parametric copula is supplemented with a likewise parametric, yet flexible, enriched asymmetric Laplace distribution for the survival times conditional on the covariates. Its asymmetric Laplace basis provides its close connection to quantiles, while the extension with Laguerre orthogonal polynomials ensures sufficient flexibility for increasing polynomial degrees. The distributional flavour of the quantile regression presented, comes with advantages of both theoretical and computational nature. All model parameters are proven to be identifiable, consistent, and asymptotically normal. Finally, performance of the model and of the proposed estimation procedure is assessed through extensive simulation studies as well as an application on liver transplant data.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09647-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of survival data often requires taking proper care of the censoring mechanism that prohibits complete observation of the data. Under right censoring, only the first occurring event is observed: either the event of interest, or a competing event like withdrawal of a subject from the study. The corresponding identifiability difficulties led many authors to imposing (conditional) independence or a fully known dependence between survival and censoring times, both of which are not always realistic. However, recent results in survival literature showed that parametric copula models allow identification of all model parameters, including the association parameter, under appropriately chosen marginal distributions. The present paper is the first one to apply such models in a quantile regression context, hence benefiting from its well-known advantages in terms of e.g. robustness and richer inference results. The parametric copula is supplemented with a likewise parametric, yet flexible, enriched asymmetric Laplace distribution for the survival times conditional on the covariates. Its asymmetric Laplace basis provides its close connection to quantiles, while the extension with Laguerre orthogonal polynomials ensures sufficient flexibility for increasing polynomial degrees. The distributional flavour of the quantile regression presented, comes with advantages of both theoretical and computational nature. All model parameters are proven to be identifiable, consistent, and asymptotically normal. Finally, performance of the model and of the proposed estimation procedure is assessed through extensive simulation studies as well as an application on liver transplant data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信