{"title":"Intersecting molecular pathways in Synucleinopathies and Amyloidogenesis: Exploring shared mechanisms and therapeutic potential.","authors":"Jashanpreet Kaur, Veerta Sharma, Heena Khan, Shareen Singh, Thakur Gurjeet Singh","doi":"10.1016/j.brainres.2025.149568","DOIUrl":null,"url":null,"abstract":"<p><p>Synucleinopathies and amyloidogenic disorders are the two most prevalent neurodegenerative conditions, characterized by progressive loss of neurons and aggregation of proteins in the central nervous system. Emerging evidence suggests that despite their distinct pathological hallmarks: α-synuclein in Parkinson's disease (PD) and amyloid-β in Alzheimer's disease (AD), both disorders share common molecular pathways, including oxidative stress, neuroinflammation, misfolding/aggregation of proteins and mitochondrial dysfunction. This review explores the molecular intersections between synucleinopathies and amyloidogenesis. Furthermore, this review highlights how these pathways drive neuronal loss and suggest that targeting them could provide broad therapeutic benefits. By elucidating the shared mechanisms between PD and AD, the multi-targeted therapies could address the underlying molecular disruptions common to both disorders, offering new avenues for effective disease-modifying treatments in neurodegenerative diseases.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149568"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2025.149568","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Synucleinopathies and amyloidogenic disorders are the two most prevalent neurodegenerative conditions, characterized by progressive loss of neurons and aggregation of proteins in the central nervous system. Emerging evidence suggests that despite their distinct pathological hallmarks: α-synuclein in Parkinson's disease (PD) and amyloid-β in Alzheimer's disease (AD), both disorders share common molecular pathways, including oxidative stress, neuroinflammation, misfolding/aggregation of proteins and mitochondrial dysfunction. This review explores the molecular intersections between synucleinopathies and amyloidogenesis. Furthermore, this review highlights how these pathways drive neuronal loss and suggest that targeting them could provide broad therapeutic benefits. By elucidating the shared mechanisms between PD and AD, the multi-targeted therapies could address the underlying molecular disruptions common to both disorders, offering new avenues for effective disease-modifying treatments in neurodegenerative diseases.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.