{"title":"Effects of pharmacological inhibition of FABP4 during gestation and lactation on offspring neurodevelopment and behavior","authors":"Sun Zhengkang , Hinako Kirikae , He Xiaofeng , Fumiko Yoshimachi , Minori Ikuta , Tetsuo Ohnishi , Yui Yamamoto , Hirofumi Miyazaki , Yoshiyuki Kasahara , Mai Sakai , Zhiqian Yu , Noriko Osumi , Hiroaki Tomita , Yuji Owada , Motoko Maekawa","doi":"10.1016/j.neulet.2025.138199","DOIUrl":null,"url":null,"abstract":"<div><div>Fatty acid-binding protein 4 (FABP4), a key regulator of lipid metabolism and inflammation, has been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). This study investigated the effects of FABP4 inhibition during gestation and lactation on offspring neurodevelopment using the selective FABP4 inhibitor BMS309403. Female mice received BMS309403 (15 mg/kg) via oral gavage from two weeks before mating to postnatal day 28 (P28). Administration of BMS309403 to mouse dams resulted in autism-like phenotypes in male offspring (behavioral tests: n = 7–10 per group; spine analysis: 6 mice per group, n = 26–38 dendrites per group), characterized by increased dendritic spine density in the prefrontal cortex, impaired vocal communication, increased repetitive behaviors, and depression-like symptoms. Fatty acid analysis (n = 4–6 per group) revealed significant alterations in maternal and fetal lipid profiles, including elevated arachidonic acid levels in maternal plasma and increased n6PUFAs in the fetal brain, suggesting a pro-inflammatory lipid environment. Principal component analysis demonstrated distinct clustering of lipid profiles between control and BMS309403-treated groups. Cytokine analysis (n = 6 per group) indicated reductions in IL-10 and IL-12(p40) in maternal plasma and decreased TNFα in the fetal plasma, suggesting dysregulation in systemic inflammatory signaling. These findings suggest that FABP4 inhibition during the perinatal period perturbs lipid metabolism and may influence neurodevelopment through systemic metabolic changes. Although the direct effects of BMS309403 on the fetal brain cannot be excluded, alteration in maternal metabolism and placental function may have contributed to the observed neurodevelopmental changes in offspring.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"853 ","pages":"Article 138199"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000874","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fatty acid-binding protein 4 (FABP4), a key regulator of lipid metabolism and inflammation, has been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). This study investigated the effects of FABP4 inhibition during gestation and lactation on offspring neurodevelopment using the selective FABP4 inhibitor BMS309403. Female mice received BMS309403 (15 mg/kg) via oral gavage from two weeks before mating to postnatal day 28 (P28). Administration of BMS309403 to mouse dams resulted in autism-like phenotypes in male offspring (behavioral tests: n = 7–10 per group; spine analysis: 6 mice per group, n = 26–38 dendrites per group), characterized by increased dendritic spine density in the prefrontal cortex, impaired vocal communication, increased repetitive behaviors, and depression-like symptoms. Fatty acid analysis (n = 4–6 per group) revealed significant alterations in maternal and fetal lipid profiles, including elevated arachidonic acid levels in maternal plasma and increased n6PUFAs in the fetal brain, suggesting a pro-inflammatory lipid environment. Principal component analysis demonstrated distinct clustering of lipid profiles between control and BMS309403-treated groups. Cytokine analysis (n = 6 per group) indicated reductions in IL-10 and IL-12(p40) in maternal plasma and decreased TNFα in the fetal plasma, suggesting dysregulation in systemic inflammatory signaling. These findings suggest that FABP4 inhibition during the perinatal period perturbs lipid metabolism and may influence neurodevelopment through systemic metabolic changes. Although the direct effects of BMS309403 on the fetal brain cannot be excluded, alteration in maternal metabolism and placental function may have contributed to the observed neurodevelopmental changes in offspring.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.