Transdermal sequential delivery of functionalized Nano-Deep eutectic system for enhanced treatment of melanoma

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Jiahao Xu , Boyuan Yang , Junxiao Zhu , Xiuming Cui , Ye Yang , Wen Zhang , Chengxiao Wang
{"title":"Transdermal sequential delivery of functionalized Nano-Deep eutectic system for enhanced treatment of melanoma","authors":"Jiahao Xu ,&nbsp;Boyuan Yang ,&nbsp;Junxiao Zhu ,&nbsp;Xiuming Cui ,&nbsp;Ye Yang ,&nbsp;Wen Zhang ,&nbsp;Chengxiao Wang","doi":"10.1016/j.ijpharm.2025.125466","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, we introduce the concept of “transdermal sequential delivery” as a non-invasive and synergistic approach for the treatment of melanoma. We developed a functionalized Deep Eutectic System (DES) that incorporates both small molecule drugs and nanoparticles. The glycolysis inhibitor 2-deoxy-D-glucose (2-DG) served as the Hydrogen Bond Donor (HBD) to form the DES, while glutathione (GSH)-responsive Mesoporous Organosilicon Nanoparticles (MON) were prepared and encapsulated with chlorin e6 (Ce6). These nanoparticles were incorporated into the DES through surface-modified citric acid (CA) as a linker, resulting in the functionalized 2-DG DES-MON@Ce6 system. By leveraging the skin’s barrier properties and the permeation-enhancing effects of the DES, both 2-DG and MON@Ce6 were delivered to the melanoma tissue in a sequential manner. Initially, 2-DG mitigated hypoxia and the immunosuppressive tumor microenvironment (TME) by disrupting glycolysis, thereby creating favorable conditions for the subsequent photodynamic therapy (PDT) effects of MON@Ce6 and enhancing immunogenic cell death (ICD). Consequently, the 2-DG DES-MON@Ce6 system demonstrated significant anti-tumor activity against melanoma within the context of the “transdermal sequential delivery” strategy. Overall, our functionalized DES-nano system facilitates the sequential transdermal delivery of drugs to melanoma, thereby maximizing the combination anti-tumor efficacy through a cascade reaction.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"674 ","pages":"Article 125466"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325003023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, we introduce the concept of “transdermal sequential delivery” as a non-invasive and synergistic approach for the treatment of melanoma. We developed a functionalized Deep Eutectic System (DES) that incorporates both small molecule drugs and nanoparticles. The glycolysis inhibitor 2-deoxy-D-glucose (2-DG) served as the Hydrogen Bond Donor (HBD) to form the DES, while glutathione (GSH)-responsive Mesoporous Organosilicon Nanoparticles (MON) were prepared and encapsulated with chlorin e6 (Ce6). These nanoparticles were incorporated into the DES through surface-modified citric acid (CA) as a linker, resulting in the functionalized 2-DG DES-MON@Ce6 system. By leveraging the skin’s barrier properties and the permeation-enhancing effects of the DES, both 2-DG and MON@Ce6 were delivered to the melanoma tissue in a sequential manner. Initially, 2-DG mitigated hypoxia and the immunosuppressive tumor microenvironment (TME) by disrupting glycolysis, thereby creating favorable conditions for the subsequent photodynamic therapy (PDT) effects of MON@Ce6 and enhancing immunogenic cell death (ICD). Consequently, the 2-DG DES-MON@Ce6 system demonstrated significant anti-tumor activity against melanoma within the context of the “transdermal sequential delivery” strategy. Overall, our functionalized DES-nano system facilitates the sequential transdermal delivery of drugs to melanoma, thereby maximizing the combination anti-tumor efficacy through a cascade reaction.

Abstract Image

经皮顺序递送功能化纳米深度共晶系统,增强黑色素瘤的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信