Photonic Crystal Enhanced Microscopy on a 2D Photonic Crystal Surface

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weinan Liu, Siyan Li, Edmond Chow, Seemesh Bhaskar, Ying Fang, Brian T. Cunningham
{"title":"Photonic Crystal Enhanced Microscopy on a 2D Photonic Crystal Surface","authors":"Weinan Liu,&nbsp;Siyan Li,&nbsp;Edmond Chow,&nbsp;Seemesh Bhaskar,&nbsp;Ying Fang,&nbsp;Brian T. Cunningham","doi":"10.1002/admt.202401837","DOIUrl":null,"url":null,"abstract":"<p>Digital-resolution biosensing based on resonant reflection from photonic crystals (PC) has demonstrated significant potential for detection of proteomic and genomic biomarkers in serology, infectious disease diagnostics, and cancer diagnostics. An important intrinsic characteristic of resonant metamaterial surfaces is that enhanced electromagnetic fields are not uniformly distributed, resulting in spatially variable light-matter interactions with nanoparticle tags that signal the presence of biomarker molecules. In this work, the spatial uniformity of resonantly enhanced, surface-confined electromagnetic fields of a 1D PC is compared with a 2D PC with fourfold symmetry. When illuminated with unpolarized light, the simultaneously excited electromagnetic fields of transverse electric and transverse magnetic modes of the 2D PC present equally strong but complementary spatial distribution, leading to a &gt;100% increased average near-field intensity accompanied with a &gt;50% compressed standard deviation compared to the 1D PC. Utilizing Photonic Resonator Absorption Microscopy (PRAM) to experimentally measure the absorption uniformity of ≈80 nm gold nanoparticles distributed upon the PC surface, a &gt;100% improvement of the signal uniformity is observed when using the 2D PC. Overall, improvement in AuNP detection contrast, uniformity, and point spread function is demonstrated by PRAM performed upon a 2D PC surface.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 6","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202401837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401837","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Digital-resolution biosensing based on resonant reflection from photonic crystals (PC) has demonstrated significant potential for detection of proteomic and genomic biomarkers in serology, infectious disease diagnostics, and cancer diagnostics. An important intrinsic characteristic of resonant metamaterial surfaces is that enhanced electromagnetic fields are not uniformly distributed, resulting in spatially variable light-matter interactions with nanoparticle tags that signal the presence of biomarker molecules. In this work, the spatial uniformity of resonantly enhanced, surface-confined electromagnetic fields of a 1D PC is compared with a 2D PC with fourfold symmetry. When illuminated with unpolarized light, the simultaneously excited electromagnetic fields of transverse electric and transverse magnetic modes of the 2D PC present equally strong but complementary spatial distribution, leading to a >100% increased average near-field intensity accompanied with a >50% compressed standard deviation compared to the 1D PC. Utilizing Photonic Resonator Absorption Microscopy (PRAM) to experimentally measure the absorption uniformity of ≈80 nm gold nanoparticles distributed upon the PC surface, a >100% improvement of the signal uniformity is observed when using the 2D PC. Overall, improvement in AuNP detection contrast, uniformity, and point spread function is demonstrated by PRAM performed upon a 2D PC surface.

Abstract Image

二维光子晶体表面的光子晶体增强显微镜
基于光子晶体(PC)共振反射的数字分辨率生物传感技术在血清学、传染病诊断和癌症诊断中检测蛋白质组学和基因组生物标志物方面显示出了巨大的潜力。共振超材料表面的一个重要固有特征是增强的电磁场不均匀分布,导致光物质与纳米粒子标签的相互作用在空间上可变,从而表明生物标记分子的存在。在这项工作中,共振增强的一维PC与具有四重对称的二维PC的空间均匀性进行了比较。在非偏振光照射下,二维PC的横向电模式和横向磁模式同时激发的电磁场呈现出同样强但互补的空间分布,导致平均近场强度比一维PC提高了>;100%,并压缩了>;50%的标准差。利用光子谐振器吸收显微镜(PRAM)实验测量了分布在PC表面的≈80 nm金纳米粒子的吸收均匀性,发现使用二维PC时,信号均匀性提高了100%。总体而言,在二维PC表面上执行PRAM可以改善AuNP检测对比度,均匀性和点扩展函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信