Sandeep Choudhury, Debolina Das, Sandipan Roy, Amit Roy Chowdhury
{"title":"Piezoelectric Biomaterials for Use in Bone Tissue Engineering—A Narrative Review","authors":"Sandeep Choudhury, Debolina Das, Sandipan Roy, Amit Roy Chowdhury","doi":"10.1002/jbm.b.35564","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To examine natural bone's bioelectrical traits, notably its piezoelectricity, and to look into how these characteristics influence bone growth and repair. In the context of exploring the potential of piezoelectric biomaterials, such as biopolymers and bio-ceramics, towards orthopedic and bone regeneration applications, the research seeks to evaluate the significance of piezoelectricity-driven osteogenesis. The paper reviews recent research on bone's electrical and dielectric properties, surface polarization/electrical stimulation effects interacting with cell activity and the effectiveness of piezoelectric biomaterials to support tissues' regenerative process. The study includes a number of materials, such as collagen, polyvinylidene fluoride (PVDF) and barium titanate. The applications of piezoelectric bio-ceramics, piezoelectric organic polymers, and piezoelectric natural polymers are particularly highlighted. Piezoelectric biomaterials are being shown in recent studies to enhance cellular metabolism in vitro as well as promote the regeneration of tissues in vivo, especially when paired with electric field stimulation or interface polarization. Piezoelectric bio-ceramics like magnesium silicate and barium titanate, as well as biopolymers like collagen and PVDF, have shown possibilities for orthopedic applications. However, there are several challenges regarding the manufacturing of bio-ceramics of specific compositions having the desired properties. This review highlighted the potential of piezoelectric biomaterials in orthopedic applications with special emphasis on biopolymers and bioceramics. Therefore, these types of materials have huge potential for bone regeneration because they can mimic the piezoelectric properties of bone and allow better advances in tissue engineering or regenerative medicine. To date, little is known about their mechanism of action, and modifications are needed to improve efficacy for clinical uptake.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35564","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To examine natural bone's bioelectrical traits, notably its piezoelectricity, and to look into how these characteristics influence bone growth and repair. In the context of exploring the potential of piezoelectric biomaterials, such as biopolymers and bio-ceramics, towards orthopedic and bone regeneration applications, the research seeks to evaluate the significance of piezoelectricity-driven osteogenesis. The paper reviews recent research on bone's electrical and dielectric properties, surface polarization/electrical stimulation effects interacting with cell activity and the effectiveness of piezoelectric biomaterials to support tissues' regenerative process. The study includes a number of materials, such as collagen, polyvinylidene fluoride (PVDF) and barium titanate. The applications of piezoelectric bio-ceramics, piezoelectric organic polymers, and piezoelectric natural polymers are particularly highlighted. Piezoelectric biomaterials are being shown in recent studies to enhance cellular metabolism in vitro as well as promote the regeneration of tissues in vivo, especially when paired with electric field stimulation or interface polarization. Piezoelectric bio-ceramics like magnesium silicate and barium titanate, as well as biopolymers like collagen and PVDF, have shown possibilities for orthopedic applications. However, there are several challenges regarding the manufacturing of bio-ceramics of specific compositions having the desired properties. This review highlighted the potential of piezoelectric biomaterials in orthopedic applications with special emphasis on biopolymers and bioceramics. Therefore, these types of materials have huge potential for bone regeneration because they can mimic the piezoelectric properties of bone and allow better advances in tissue engineering or regenerative medicine. To date, little is known about their mechanism of action, and modifications are needed to improve efficacy for clinical uptake.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.