Shanti Gurung, Jacqueline Piskopos, Joel Steele, Ralf Schittenhelm, Anup Shah, Fiona L. Cousins, Thomas T. Tapmeier, Caroline E. Gargett
{"title":"Potential Role of Menstrual Fluid-Derived Small Extracellular Vesicle Proteins in Endometriosis Pathogenesiss","authors":"Shanti Gurung, Jacqueline Piskopos, Joel Steele, Ralf Schittenhelm, Anup Shah, Fiona L. Cousins, Thomas T. Tapmeier, Caroline E. Gargett","doi":"10.1002/jev2.70048","DOIUrl":null,"url":null,"abstract":"<p>Endometriosis, a chronic debilitating disease affects 1 in 7–10 girls and women, who have symptoms of severe chronic pain and subfertility and significantly impacts the overall quality of life. Currently, no effective early diagnostic methods are available for early stages of endometriosis. We used menstrual fluid-derived small extracellular vesicles (MF-sEVs) from women with self-reported endometriosis (laparoscopically diagnosed, <i>n</i> = 8) and self-reported without endometriosis and no painful periods (<i>n</i> = 9). MF-sEVs were separated using differential ultracentrifugation and characterised using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Western Blot, flow cytometry, mass-proteomics analysis and functional assays. Spherical-shaped sEVs were identified with a median diameter of ∼120 nm, expressing sEV marker proteins. The MF-sEV proteins were classified as endometrial origin. Over 5000 proteins were identified, ∼77% of which were decreased whilst only 22 proteins (largely comprising immunoglobulins) were increased in endometriosis/MF-sEVs compared to control/MF-sEVs. Decreased proteins were involved in nitrogen compound metabolism, immune response, intracellular signal transduction, regulation of programmed cell death, maintenance of cell polarity and actin cytoskeleton organisation. Flow cytometry demonstrated a significant increase in CD86 expression (immune activation marker) in endometriosis/MF-sEVs. Mesothelial cells showed a significant decrease in cellular resistance and junctional protein expression. MF-sEVs are possible contributors to the pathogenesis of endometriosis and may have the potential for early detection of the disease.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 3","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70048","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70048","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometriosis, a chronic debilitating disease affects 1 in 7–10 girls and women, who have symptoms of severe chronic pain and subfertility and significantly impacts the overall quality of life. Currently, no effective early diagnostic methods are available for early stages of endometriosis. We used menstrual fluid-derived small extracellular vesicles (MF-sEVs) from women with self-reported endometriosis (laparoscopically diagnosed, n = 8) and self-reported without endometriosis and no painful periods (n = 9). MF-sEVs were separated using differential ultracentrifugation and characterised using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Western Blot, flow cytometry, mass-proteomics analysis and functional assays. Spherical-shaped sEVs were identified with a median diameter of ∼120 nm, expressing sEV marker proteins. The MF-sEV proteins were classified as endometrial origin. Over 5000 proteins were identified, ∼77% of which were decreased whilst only 22 proteins (largely comprising immunoglobulins) were increased in endometriosis/MF-sEVs compared to control/MF-sEVs. Decreased proteins were involved in nitrogen compound metabolism, immune response, intracellular signal transduction, regulation of programmed cell death, maintenance of cell polarity and actin cytoskeleton organisation. Flow cytometry demonstrated a significant increase in CD86 expression (immune activation marker) in endometriosis/MF-sEVs. Mesothelial cells showed a significant decrease in cellular resistance and junctional protein expression. MF-sEVs are possible contributors to the pathogenesis of endometriosis and may have the potential for early detection of the disease.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.