{"title":"Fully noncentral Lie ideals and invariant additive subgroups in rings","authors":"Eusebio Gardella, Tsiu-Kwen Lee, Hannes Thiel","doi":"10.1112/jlms.70127","DOIUrl":null,"url":null,"abstract":"<p>We prove conditions ensuring that a Lie ideal or an invariant additive subgroup in a ring contains all additive commutators. A crucial assumption is that the subgroup is fully noncentral, that is, its image in every quotient is noncentral. For a unital algebra over a field of characteristic <span></span><math>\n <semantics>\n <mrow>\n <mo>≠</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\ne 2$</annotation>\n </semantics></math> where every additive commutator is a sum of square-zero elements, we show that a fully noncentral subspace is a Lie ideal if and only if it is invariant under all inner automorphisms. This applies in particular to zero-product balanced algebras.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70127","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70127","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove conditions ensuring that a Lie ideal or an invariant additive subgroup in a ring contains all additive commutators. A crucial assumption is that the subgroup is fully noncentral, that is, its image in every quotient is noncentral. For a unital algebra over a field of characteristic where every additive commutator is a sum of square-zero elements, we show that a fully noncentral subspace is a Lie ideal if and only if it is invariant under all inner automorphisms. This applies in particular to zero-product balanced algebras.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.