{"title":"Solvability and uniqueness of solution of generalized \n \n ★\n $\\star$\n -Sylvester equations with arbitrary coefficients","authors":"Fernando De Terán, Bruno Iannazzo","doi":"10.1112/jlms.70129","DOIUrl":null,"url":null,"abstract":"<p>We analyze the consistency and uniqueness of solution of the generalized <span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math>-Sylvester equation <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>X</mi>\n <mi>B</mi>\n <mo>+</mo>\n <mi>C</mi>\n <msup>\n <mi>X</mi>\n <mi>★</mi>\n </msup>\n <mi>D</mi>\n <mo>=</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$AXB+CX^\\star D=E$</annotation>\n </semantics></math>, with <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>,</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$A,B,C, D$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> being complex matrices (and <span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math> being either the transpose or the conjugate transpose). In particular, we obtain characterizations for the equation to have at most one solution and to be consistent for any right-hand side. Such characterizations are given in terms of spectral properties of the matrix pencils <span></span><math>\n <semantics>\n <mfenced>\n <mtable>\n <mtr>\n <mtd>\n <mrow>\n <mi>λ</mi>\n <msup>\n <mi>D</mi>\n <mi>★</mi>\n </msup>\n </mrow>\n </mtd>\n <mtd>\n <msup>\n <mi>B</mi>\n <mi>★</mi>\n </msup>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <mi>A</mi>\n </mtd>\n <mtd>\n <mrow>\n <mi>λ</mi>\n <mi>C</mi>\n </mrow>\n </mtd>\n </mtr>\n </mtable>\n </mfenced>\n <annotation>$\\left[\\begin{smallmatrix}\\lambda D^\\star & B^\\star \\\\ A & \\lambda C\\end{smallmatrix}\\right]$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mfenced>\n <mtable>\n <mtr>\n <mtd>\n <mrow>\n <mi>λ</mi>\n <msup>\n <mi>C</mi>\n <mi>★</mi>\n </msup>\n </mrow>\n </mtd>\n <mtd>\n <mi>B</mi>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <msup>\n <mi>A</mi>\n <mi>★</mi>\n </msup>\n </mtd>\n <mtd>\n <mrow>\n <mi>λ</mi>\n <mi>D</mi>\n </mrow>\n </mtd>\n </mtr>\n </mtable>\n </mfenced>\n <annotation>$\\left[\\begin{smallmatrix}\\lambda C^\\star & B\\\\ A^\\star & \\lambda D\\end{smallmatrix}\\right]$</annotation>\n </semantics></math>, respectively. This approach deals with matrices whose size is of the same order as that of <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>,</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$A,B,C$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math>, contrary to the naive procedure that addresses the equation as a linear system, whose coefficient matrix can be much larger. The characterizations are valid in the most general setting, namely for all coefficient matrices <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>,</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$A,B,C$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math> for which the equation is well-defined, and generalize the known characterizations for the case where they are all square. As a corollary, we obtain necessary and sufficient conditions for the <span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math>-Sylvester equation <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>X</mi>\n <mo>+</mo>\n <msup>\n <mi>X</mi>\n <mi>★</mi>\n </msup>\n <mi>D</mi>\n <mo>=</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$AX+X^\\star D=E$</annotation>\n </semantics></math> and the <span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math>-Stein equation <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>+</mo>\n <mi>C</mi>\n <msup>\n <mi>X</mi>\n <mi>★</mi>\n </msup>\n <mi>D</mi>\n <mo>=</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$X+CX^\\star D=E$</annotation>\n </semantics></math> to have at most one solution or to be consistent, for any right-hand side <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70129","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the consistency and uniqueness of solution of the generalized -Sylvester equation , with , and being complex matrices (and being either the transpose or the conjugate transpose). In particular, we obtain characterizations for the equation to have at most one solution and to be consistent for any right-hand side. Such characterizations are given in terms of spectral properties of the matrix pencils and , respectively. This approach deals with matrices whose size is of the same order as that of , and , contrary to the naive procedure that addresses the equation as a linear system, whose coefficient matrix can be much larger. The characterizations are valid in the most general setting, namely for all coefficient matrices , and for which the equation is well-defined, and generalize the known characterizations for the case where they are all square. As a corollary, we obtain necessary and sufficient conditions for the -Sylvester equation and the -Stein equation to have at most one solution or to be consistent, for any right-hand side .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.