Digital documentation of railway tunnel inspection in Austria

Matthias J. Rebhan, Stefan S. Grubinger, Andreas Schüppel, Simona Deutinger, Gernot Schwarzenberger
{"title":"Digital documentation of railway tunnel inspection in Austria","authors":"Matthias J. Rebhan,&nbsp;Stefan S. Grubinger,&nbsp;Andreas Schüppel,&nbsp;Simona Deutinger,&nbsp;Gernot Schwarzenberger","doi":"10.1002/cend.202400029","DOIUrl":null,"url":null,"abstract":"<p>Infrastructure, especially railway tunnels, require continuous inspection to ensure their safety. Furthermore, the detection of damages at an early stage can improve their service life. These tasks represent a major challenge for those involved and the tunnel down time is a disruption in operation. In rail networks, comprehensive preparations are necessary to be able to plan closures and required compensation measures. To optimize this process, a workflow for a digital inspection was generated to allow a rapid localization and a corresponding time advantage when conducting the activities on site. In doing so, a multitude of bases can be used, a standardization of damage patterns is carried out and a collaborative cooperation of multiple inspection personnel is possible. Depending on the data stock, digitized as-built models in the form of a plan, digital plan documents and existing or generated digital twins can be used. Making it possible to locate a damage already during the inspection and thus enable a comprehensible documentation and an automated generation of reports. The pre-set options for attribution of damages enables a time-optimized inspection on site—which enables a reduction of the required time, the associated restrictions on traffic routing and at the same time reduces the susceptibility to errors. Within this paper, results of a first series of field tests along the Tauern Line of ÖBB, using a digital inspection workflow, are presented.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"7 1","pages":"3-8"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cend.202400029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cend.202400029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Infrastructure, especially railway tunnels, require continuous inspection to ensure their safety. Furthermore, the detection of damages at an early stage can improve their service life. These tasks represent a major challenge for those involved and the tunnel down time is a disruption in operation. In rail networks, comprehensive preparations are necessary to be able to plan closures and required compensation measures. To optimize this process, a workflow for a digital inspection was generated to allow a rapid localization and a corresponding time advantage when conducting the activities on site. In doing so, a multitude of bases can be used, a standardization of damage patterns is carried out and a collaborative cooperation of multiple inspection personnel is possible. Depending on the data stock, digitized as-built models in the form of a plan, digital plan documents and existing or generated digital twins can be used. Making it possible to locate a damage already during the inspection and thus enable a comprehensible documentation and an automated generation of reports. The pre-set options for attribution of damages enables a time-optimized inspection on site—which enables a reduction of the required time, the associated restrictions on traffic routing and at the same time reduces the susceptibility to errors. Within this paper, results of a first series of field tests along the Tauern Line of ÖBB, using a digital inspection workflow, are presented.

Abstract Image

奥地利铁路隧道检查的数字文档
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信