Hsa_circ_0004662 Accelerates the Progression of Ulcerative Colitis via the microRNA-532/HMGB3 Signalling Axis

IF 5.3
Chunhua Qiu, Yun Chen, Huan Xia, Jun Duan, Lu Zhang, You Zhang, Ziyang Chen, Li Zhang
{"title":"Hsa_circ_0004662 Accelerates the Progression of Ulcerative Colitis via the microRNA-532/HMGB3 Signalling Axis","authors":"Chunhua Qiu,&nbsp;Yun Chen,&nbsp;Huan Xia,&nbsp;Jun Duan,&nbsp;Lu Zhang,&nbsp;You Zhang,&nbsp;Ziyang Chen,&nbsp;Li Zhang","doi":"10.1111/jcmm.70430","DOIUrl":null,"url":null,"abstract":"<p>Increasing research has indicated that circular RNAs (circRNAs) are crucial for the development of ulcerative colitis (UC). Thus, we attempted to identify the role of hsa_circ_0004662 in UC progression. Hsa_circ_0004662 expression was determined via qRT-PCR. Lipopolysaccharide (LPS)-induced inflammation in normal colonic epithelial cells (ECs). The hsa_circ_0004662 content was then assessed in a mucosal inflammatory bowel disease (IBD) model. Cell proliferation was examined via CCK-8 and EdU uptake assays. Apoptotic rates were analysed via flow cytometry. The protein content was quantified via Western blotting. Enzyme-linked immunosorbent assay kits were used to detect IL-1β, TNF-α and IL-6, and dual-luciferase reporter (DLR) assays were used to identify interactions between miR-532 and circ_0004662 or HMGB3. An animal model of UC was also developed for confirmation. In this study, we identified the function of hsa_circ_0004662 in promoting UC progression. Hsa_circ_0004662 was upregulated in clinical UC tissues and LPS-induced colonic ECs, and its knockdown inhibited apoptosis, reduced inflammatory cytokine release and promoted cell proliferation in vitro. Mechanistically, hsa_circ_0004662 acted as a molecular sponge for miR-532, which targets HMGB3. The hsa_circ_0004662/miR-532/HMGB3 axis was further validated in a DSS-induced colitis mouse model, where hsa_circ_0004662 knockdown attenuated inflammation and tissue damage. These findings suggested that hsa_circ_0004662 contributes to UC progression through the miR-532/HMGB3 signalling pathway, offering potential targets for UC therapy.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing research has indicated that circular RNAs (circRNAs) are crucial for the development of ulcerative colitis (UC). Thus, we attempted to identify the role of hsa_circ_0004662 in UC progression. Hsa_circ_0004662 expression was determined via qRT-PCR. Lipopolysaccharide (LPS)-induced inflammation in normal colonic epithelial cells (ECs). The hsa_circ_0004662 content was then assessed in a mucosal inflammatory bowel disease (IBD) model. Cell proliferation was examined via CCK-8 and EdU uptake assays. Apoptotic rates were analysed via flow cytometry. The protein content was quantified via Western blotting. Enzyme-linked immunosorbent assay kits were used to detect IL-1β, TNF-α and IL-6, and dual-luciferase reporter (DLR) assays were used to identify interactions between miR-532 and circ_0004662 or HMGB3. An animal model of UC was also developed for confirmation. In this study, we identified the function of hsa_circ_0004662 in promoting UC progression. Hsa_circ_0004662 was upregulated in clinical UC tissues and LPS-induced colonic ECs, and its knockdown inhibited apoptosis, reduced inflammatory cytokine release and promoted cell proliferation in vitro. Mechanistically, hsa_circ_0004662 acted as a molecular sponge for miR-532, which targets HMGB3. The hsa_circ_0004662/miR-532/HMGB3 axis was further validated in a DSS-induced colitis mouse model, where hsa_circ_0004662 knockdown attenuated inflammation and tissue damage. These findings suggested that hsa_circ_0004662 contributes to UC progression through the miR-532/HMGB3 signalling pathway, offering potential targets for UC therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信