Advantages and Limitations of Photoconvertible Probes to Study Subcellular Dynamics in Epithelial Cells

IF 2.4 4区 生物学 Q4 CELL BIOLOGY
Mathieu Pinot, Marie André, Chantal Roubinet, Céline Bruelle, Roland Le Borgne
{"title":"Advantages and Limitations of Photoconvertible Probes to Study Subcellular Dynamics in Epithelial Cells","authors":"Mathieu Pinot,&nbsp;Marie André,&nbsp;Chantal Roubinet,&nbsp;Céline Bruelle,&nbsp;Roland Le Borgne","doi":"10.1111/boc.12008","DOIUrl":null,"url":null,"abstract":"<p>The recent development of a wide variety of genetically encoded photoconvertible fluorescent proteins has made it possible to study unprecedented dynamic processes by monitoring sub-populations of cells or labeled proteins. The use of photoconvertible fluorescent proteins, such as Eos, KAEDE, mMaple3, Dendra2 is a major advance. However, the conditions of their use in vivo and the inherent potential side-effects remain poorly characterized. Here, we used <i>Drosophila</i> pupal notum to characterize in vivo the conditions for photoconversion (PC) at the subcellular level. We compared the ability to photoconvert proteins exhibiting distinct localization and dynamics, namely, cytosolic and transmembrane proteins fused to photoconvertible probes and expressed at physiological levels. We report that the restriction of PC to a predefined region of interest depends on the mobility of the tagged protein, the power of the PC laser and the number of iterations. We characterized the axial spreading inherent to one-photon microscopy, which results in a PC cone that limits probe tracking on the <i>z</i>-axis. We discussed how the use of a two-photon laser can overcome this issue. We detail biases in the use of photoconvertible probes and propose strategies to circumvent them. Overall, our study provides a framework to study protein behavior at the subcellular level in living organisms.</p>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"117 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.12008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/boc.12008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent development of a wide variety of genetically encoded photoconvertible fluorescent proteins has made it possible to study unprecedented dynamic processes by monitoring sub-populations of cells or labeled proteins. The use of photoconvertible fluorescent proteins, such as Eos, KAEDE, mMaple3, Dendra2 is a major advance. However, the conditions of their use in vivo and the inherent potential side-effects remain poorly characterized. Here, we used Drosophila pupal notum to characterize in vivo the conditions for photoconversion (PC) at the subcellular level. We compared the ability to photoconvert proteins exhibiting distinct localization and dynamics, namely, cytosolic and transmembrane proteins fused to photoconvertible probes and expressed at physiological levels. We report that the restriction of PC to a predefined region of interest depends on the mobility of the tagged protein, the power of the PC laser and the number of iterations. We characterized the axial spreading inherent to one-photon microscopy, which results in a PC cone that limits probe tracking on the z-axis. We discussed how the use of a two-photon laser can overcome this issue. We detail biases in the use of photoconvertible probes and propose strategies to circumvent them. Overall, our study provides a framework to study protein behavior at the subcellular level in living organisms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology of the Cell
Biology of the Cell 生物-细胞生物学
CiteScore
5.30
自引率
0.00%
发文量
53
审稿时长
>12 weeks
期刊介绍: The journal publishes original research articles and reviews on all aspects of cellular, molecular and structural biology, developmental biology, cell physiology and evolution. It will publish articles or reviews contributing to the understanding of the elementary biochemical and biophysical principles of live matter organization from the molecular, cellular and tissues scales and organisms. This includes contributions directed towards understanding biochemical and biophysical mechanisms, structure-function relationships with respect to basic cell and tissue functions, development, development/evolution relationship, morphogenesis, stem cell biology, cell biology of disease, plant cell biology, as well as contributions directed toward understanding integrated processes at the organelles, cell and tissue levels. Contributions using approaches such as high resolution imaging, live imaging, quantitative cell biology and integrated biology; as well as those using innovative genetic and epigenetic technologies, ex-vivo tissue engineering, cellular, tissue and integrated functional analysis, and quantitative biology and modeling to demonstrate original biological principles are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信