HOGA1 Suppresses Renal Cell Carcinoma Growth via Inhibiting the Wnt/β-Catenin Signalling Pathway

IF 5.3
Congmin Wang, Yu Liu, Ying Tan, Fuyi Xu, Mingyao Wang, Yiming Tang, Guofeng Nie, Xiaodong Chi, Zhaowei Xu, Yuxue Xu, Baijiao An, Geng Tian, Donglai Qi, Cuifang Yao
{"title":"HOGA1 Suppresses Renal Cell Carcinoma Growth via Inhibiting the Wnt/β-Catenin Signalling Pathway","authors":"Congmin Wang,&nbsp;Yu Liu,&nbsp;Ying Tan,&nbsp;Fuyi Xu,&nbsp;Mingyao Wang,&nbsp;Yiming Tang,&nbsp;Guofeng Nie,&nbsp;Xiaodong Chi,&nbsp;Zhaowei Xu,&nbsp;Yuxue Xu,&nbsp;Baijiao An,&nbsp;Geng Tian,&nbsp;Donglai Qi,&nbsp;Cuifang Yao","doi":"10.1111/jcmm.70490","DOIUrl":null,"url":null,"abstract":"<p>Changes in hydroxyproline metabolism are reported to promote tumorigenesis. HOGA1 is a useful marker for diagnosing primary hyperoxaluria 3, catalysing the final step of mitochondrial hydroxyproline metabolism from 4-hydroxy-2-oxoglutarate (HOG) to glyoxylate and pyruvate; however, its specific mechanism in RCC remains unclear. This study investigated the role of HOGA1 in the pathogenesis of ccRCC. The results showed that HOGA1 was decreased significantly in tumour tissues, with this low expression associated with a poor prognosis in patients with ccRCC. QTL mapping showed that <i>Hoga1</i> was <i>cis</i>-regulated. Gene enrichment analyses showed that <i>Hoga1</i> co-expressed genes were enriched in the Wnt/β-catenin signalling pathway. Furthermore, in vitro and in vivo assays demonstrated that HOGA1 significantly inhibited the proliferation, invasion and migration of renal carcinoma cells via the Wnt/β-catenin–c-Myc/CyclinD1 axis, probably via regulating the level of HOG. In conclusion, this study demonstrates that HOGA1 has a tumour suppressor role by inhibiting the Wnt/β-catenin signalling pathway. This finding provides new insights into the function of HOGA1 in ccRCC.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70490","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in hydroxyproline metabolism are reported to promote tumorigenesis. HOGA1 is a useful marker for diagnosing primary hyperoxaluria 3, catalysing the final step of mitochondrial hydroxyproline metabolism from 4-hydroxy-2-oxoglutarate (HOG) to glyoxylate and pyruvate; however, its specific mechanism in RCC remains unclear. This study investigated the role of HOGA1 in the pathogenesis of ccRCC. The results showed that HOGA1 was decreased significantly in tumour tissues, with this low expression associated with a poor prognosis in patients with ccRCC. QTL mapping showed that Hoga1 was cis-regulated. Gene enrichment analyses showed that Hoga1 co-expressed genes were enriched in the Wnt/β-catenin signalling pathway. Furthermore, in vitro and in vivo assays demonstrated that HOGA1 significantly inhibited the proliferation, invasion and migration of renal carcinoma cells via the Wnt/β-catenin–c-Myc/CyclinD1 axis, probably via regulating the level of HOG. In conclusion, this study demonstrates that HOGA1 has a tumour suppressor role by inhibiting the Wnt/β-catenin signalling pathway. This finding provides new insights into the function of HOGA1 in ccRCC.

Abstract Image

HOGA1 通过抑制 Wnt/β-Catenin 信号通路抑制肾细胞癌细胞生长
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信