Investigating Disturbance-Induced Misoperation of Grid-Following Inverter-Based Resources

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Negar Karimipour, Mohammadreza F. M. Arani, Amir Abiri Jahromi
{"title":"Investigating Disturbance-Induced Misoperation of Grid-Following Inverter-Based Resources","authors":"Negar Karimipour,&nbsp;Mohammadreza F. M. Arani,&nbsp;Amir Abiri Jahromi","doi":"10.1049/gtd2.70046","DOIUrl":null,"url":null,"abstract":"<p>The rapid integration of grid-following inverter-based resources (GFL-IBRs) has increased the importance of their dynamic behaviour during disturbances. Simultaneously, there are increasing number of reports about the misoperation or inadvertent disconnection of GFL-IBRs during disturbances. This paper attempts to shed light on one of the potential root causes of disturbance-induced misoperations of GFL-IBRs. A framework is presented to quantify voltage drop and voltage phase angle jump that appear at the terminals of GFL-IBRs immediately after the inception of various events in the grid such as faults, and tripping of generators and transmission lines. We demonstrate voltage drop and voltage phase angle jump in the upstream grid due to various disturbances may transform into severe voltage drop and voltage phase angle jump at the terminals of GFL-IBRs. The combination of voltage drop and voltage phase angle jump that appear at the terminals of GFL-IBRs is identified as one of the root causes of their misoperation. Therefore, system-wide studies are required to evaluate the dynamic performance of GFL-IBRs rather than sole compliance with standards. The importance of system-wide studies is demonstrated through IEEE 39-bus test system. The impact of voltage drop and voltage phase angle jump in the upstream grid on the dynamic performance of GFL-IBRs is demonstrated using electromagnetic transient studies.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid integration of grid-following inverter-based resources (GFL-IBRs) has increased the importance of their dynamic behaviour during disturbances. Simultaneously, there are increasing number of reports about the misoperation or inadvertent disconnection of GFL-IBRs during disturbances. This paper attempts to shed light on one of the potential root causes of disturbance-induced misoperations of GFL-IBRs. A framework is presented to quantify voltage drop and voltage phase angle jump that appear at the terminals of GFL-IBRs immediately after the inception of various events in the grid such as faults, and tripping of generators and transmission lines. We demonstrate voltage drop and voltage phase angle jump in the upstream grid due to various disturbances may transform into severe voltage drop and voltage phase angle jump at the terminals of GFL-IBRs. The combination of voltage drop and voltage phase angle jump that appear at the terminals of GFL-IBRs is identified as one of the root causes of their misoperation. Therefore, system-wide studies are required to evaluate the dynamic performance of GFL-IBRs rather than sole compliance with standards. The importance of system-wide studies is demonstrated through IEEE 39-bus test system. The impact of voltage drop and voltage phase angle jump in the upstream grid on the dynamic performance of GFL-IBRs is demonstrated using electromagnetic transient studies.

Abstract Image

基于电网跟踪逆变器的资源干扰误操作研究
基于电网跟随逆变器的资源(GFL-IBRs)的快速整合增加了它们在干扰期间动态行为的重要性。同时,有越来越多的报道在干扰期间误操作或无意断开gfl - ibr。本文试图揭示干扰引起gfl - ibr误操作的潜在根本原因之一。提出了一种框架来量化GFL-IBRs终端在电网中发生各种事件(如故障、发电机跳闸和输电线路跳闸)后立即出现的电压降和电压相角跳变。研究表明,由于各种干扰,上游电网中的电压降和电压相角跳变可能在gfl - ibr的终端处转化为严重的电压降和电压相角跳变。在gfl - ibr的端子处出现电压降和电压相角跳变的组合是导致其误操作的根本原因之一。因此,需要进行全系统的研究来评估gfl - ibr的动态性能,而不是仅仅遵守标准。通过IEEE 39总线测试系统证明了全系统研究的重要性。利用电磁暂态研究证明了上游电网电压降和电压相角跳变对GFL-IBRs动态性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信