Diponkar Kundu, Mir Sabbir Hossain, Most. Momtahina Bani, A. H. M. Iftekharul Ferdous, Khalid Sifulla Noor, Laxmi rani, Md. Safiul Islam
{"title":"Highly Effective PCF Sensor for Ensuring Edible Oil Safety and Quality Within the THz Regime","authors":"Diponkar Kundu, Mir Sabbir Hossain, Most. Momtahina Bani, A. H. M. Iftekharul Ferdous, Khalid Sifulla Noor, Laxmi rani, Md. Safiul Islam","doi":"10.1049/wss2.70002","DOIUrl":null,"url":null,"abstract":"<p>This research presents a novel square hollow-core photonic crystal fibre (PCF) sensor designed for the detection of food-grade oils in the terahertz (THz) frequency range. The sensor’s effectiveness is quantitatively evaluated using COMSOL Multiphysics, a sophisticated simulation tool that employs finite element methodology (FEM) to model complex interactions within the fibre structure. Simulation outcomes reveal that, under optimal geometric parameters, the proposed sensor achieves an exceptional relative sensitivity of 98.27% for various edible oils at an ideal frequency of 2.2 THz, significantly outperforming existing technologies. Additionally, the sensor exhibits minimal confinement loss of 1.428 × 10<sup>−8</sup> dB/m and a low effective material loss of 0.004246 cm<sup>−1</sup>, facilitating accurate detection of slight refractive index variations related to the chemical compositions of different oils. This high sensitivity enables non-destructive testing, allowing for the analysis of oils without compromising their composition or quality, thereby maintaining the integrity of food products. Ultimately, the proposed PCF sensor enhances food safety monitoring and paves the way for advanced applications in the food industry, ensuring consumers receive high-quality products.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents a novel square hollow-core photonic crystal fibre (PCF) sensor designed for the detection of food-grade oils in the terahertz (THz) frequency range. The sensor’s effectiveness is quantitatively evaluated using COMSOL Multiphysics, a sophisticated simulation tool that employs finite element methodology (FEM) to model complex interactions within the fibre structure. Simulation outcomes reveal that, under optimal geometric parameters, the proposed sensor achieves an exceptional relative sensitivity of 98.27% for various edible oils at an ideal frequency of 2.2 THz, significantly outperforming existing technologies. Additionally, the sensor exhibits minimal confinement loss of 1.428 × 10−8 dB/m and a low effective material loss of 0.004246 cm−1, facilitating accurate detection of slight refractive index variations related to the chemical compositions of different oils. This high sensitivity enables non-destructive testing, allowing for the analysis of oils without compromising their composition or quality, thereby maintaining the integrity of food products. Ultimately, the proposed PCF sensor enhances food safety monitoring and paves the way for advanced applications in the food industry, ensuring consumers receive high-quality products.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.