Energy harvesting and forced vibration of flexoelectric hydrogel-based triboelectric spherical cap microgenerators

IF 2.3 3区 工程技术 Q2 MECHANICS
M. Furjan, X. Zhou, X. Shen, A. Farrokhian, R. Kolahchi, M. Yaylacı
{"title":"Energy harvesting and forced vibration of flexoelectric hydrogel-based triboelectric spherical cap microgenerators","authors":"M. Furjan,&nbsp;X. Zhou,&nbsp;X. Shen,&nbsp;A. Farrokhian,&nbsp;R. Kolahchi,&nbsp;M. Yaylacı","doi":"10.1007/s00707-024-04209-1","DOIUrl":null,"url":null,"abstract":"<div><p>Wearable electronics and microsystems using flexoelectric hydrogel-based triboelectric spherical cap microgenerators have a primary application in energy harvesting. Using mechanical energy derived from environmental vibrations or human motion, small devices, sensors, and medical implants are powered by electrical energy. An investigation of advanced energy harvesting and nonlinear forced vibration characteristics of sandwich spherical cap triboelectric microgenerators is presented as the main contribution of this work. The microgenerator structure is innovatively designed with a hydrogel core, sandwiched between polydimethylsiloxane (PDMS) layers and flexoelectric materials on the top and bottom surfaces. The strain gradient theory incorporates size effects, which are essential to accurate microscale modeling. A complex interaction between mechanical and electrical fields can be captured by using Hamilton’s principle and higher-order shear deformation theory (HSDT). A precise and efficient numerical analysis is achieved using the differential quadrature method (DQM) and Newmark approach to solve these coupled electromechanical equations of motion. Taking surface stresses into account, the maximum dynamic deflection, output voltage, and generated electrical power decreased by 23%, 22%, and 40%, respectively. Additionally, increasing the core-to-polymer skin thickness ratio led to a 77% increase in maximum dynamic deflection and a 2.75-fold increase in output voltage.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 3","pages":"1719 - 1759"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04209-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable electronics and microsystems using flexoelectric hydrogel-based triboelectric spherical cap microgenerators have a primary application in energy harvesting. Using mechanical energy derived from environmental vibrations or human motion, small devices, sensors, and medical implants are powered by electrical energy. An investigation of advanced energy harvesting and nonlinear forced vibration characteristics of sandwich spherical cap triboelectric microgenerators is presented as the main contribution of this work. The microgenerator structure is innovatively designed with a hydrogel core, sandwiched between polydimethylsiloxane (PDMS) layers and flexoelectric materials on the top and bottom surfaces. The strain gradient theory incorporates size effects, which are essential to accurate microscale modeling. A complex interaction between mechanical and electrical fields can be captured by using Hamilton’s principle and higher-order shear deformation theory (HSDT). A precise and efficient numerical analysis is achieved using the differential quadrature method (DQM) and Newmark approach to solve these coupled electromechanical equations of motion. Taking surface stresses into account, the maximum dynamic deflection, output voltage, and generated electrical power decreased by 23%, 22%, and 40%, respectively. Additionally, increasing the core-to-polymer skin thickness ratio led to a 77% increase in maximum dynamic deflection and a 2.75-fold increase in output voltage.

基于柔性水凝胶的三电球帽微型发电机的能量采集和强制振动
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica
Acta Mechanica 物理-力学
CiteScore
4.30
自引率
14.80%
发文量
292
审稿时长
6.9 months
期刊介绍: Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信