{"title":"Transient thermoelastic responses of dielectrics subjected to ultrashort shaped pulses","authors":"Muqiu Peng, Sen Leng, Yi Zhao, Xiaogeng Tian","doi":"10.1007/s00707-025-04227-7","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrashort laser pulse shaping is one of the crucial technologies to improve the ultrashort pulsed laser machining of dielectrics. However, the thermoelastic responses have not been considered in the previous studies in this area. This study aims to accurately predict the thermoelastic responses of dielectrics subjected to ultrashort shaped laser pulses and to provide guidance for the laser processing of dielectrics. In this paper, the Guyer–Krumhansl heat conduction and nonlocal elasticity are integrated into the theory of ultrafast laser-material interactions to accurately predict the thermoelastic responses during ultrashort shaped pulses. The evolution of electron density, electron temperature, lattice temperature, and thermal stresses are obtained using finite element method. The transient responses during two-pulse laser irradiation and the influences of pulse shaping parameters (including pulse number, separation time, and energy ratio of sub-pulses) are analyzed. Results indicate that the temperature rise during the first laser pulse is much lower than that during the subsequent pulses. The maximum value of circumferential stress at different laser parameters almost keeps unchanged due to the reduced elastic modulus. The laser parameters have significant effects on the temperature and stresses.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 3","pages":"1535 - 1550"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-025-04227-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrashort laser pulse shaping is one of the crucial technologies to improve the ultrashort pulsed laser machining of dielectrics. However, the thermoelastic responses have not been considered in the previous studies in this area. This study aims to accurately predict the thermoelastic responses of dielectrics subjected to ultrashort shaped laser pulses and to provide guidance for the laser processing of dielectrics. In this paper, the Guyer–Krumhansl heat conduction and nonlocal elasticity are integrated into the theory of ultrafast laser-material interactions to accurately predict the thermoelastic responses during ultrashort shaped pulses. The evolution of electron density, electron temperature, lattice temperature, and thermal stresses are obtained using finite element method. The transient responses during two-pulse laser irradiation and the influences of pulse shaping parameters (including pulse number, separation time, and energy ratio of sub-pulses) are analyzed. Results indicate that the temperature rise during the first laser pulse is much lower than that during the subsequent pulses. The maximum value of circumferential stress at different laser parameters almost keeps unchanged due to the reduced elastic modulus. The laser parameters have significant effects on the temperature and stresses.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.