Study of the Surface Morphology and Inclusions of Heavy Metals in Basal-Faceted Sapphire Ribbons Using In-Line X-Ray Phase-Contrast Imaging

IF 0.5 Q4 PHYSICS, CONDENSED MATTER
T. S. Argunova, V. G. Kohn, J.-H. Lim, V. M. Krymov, A. V. Ankudinov
{"title":"Study of the Surface Morphology and Inclusions of Heavy Metals in Basal-Faceted Sapphire Ribbons Using In-Line X-Ray Phase-Contrast Imaging","authors":"T. S. Argunova,&nbsp;V. G. Kohn,&nbsp;J.-H. Lim,&nbsp;V. M. Krymov,&nbsp;A. V. Ankudinov","doi":"10.1134/S1027451024701817","DOIUrl":null,"url":null,"abstract":"<p>This study presents the results of research concerning microsteps on the surface and the inclusions of heavy metals in the volume of sapphire ribbons grown using Stepanov’s method. Basal-faceted sapphire ribbons exhibit a low density of steps, which are caused by small changes in the orientation of the growth surface or the thickness of the ribbon. Phase contrast imaging using synchrotron radiation is employed to study the defects. It is shown for the first time that the height of a step of 1 µm can be determined directly from the image. An analytical solution for the intensity distribution of the step in the case of fully coherent X-ray radiation is obtained. When the phase shift is small, there is a direct proportionality between contrast and step height, and the inverse problem is easily solved. The height obtained using the phase-contrast-imaging method is confirmed by measurements using atomic force microscopy. To analyze microinclusions, a computer simulation program is used, which allows for assessment of their sizes. We find that the experimental contrast matches the theoretical calculations only if the calculated intensity profile is convolved with a Gaussian function. The full width at half maximum of the Gaussian is independently obtained from preliminary measurements.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 1 supplement","pages":"S16 - S23"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024701817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the results of research concerning microsteps on the surface and the inclusions of heavy metals in the volume of sapphire ribbons grown using Stepanov’s method. Basal-faceted sapphire ribbons exhibit a low density of steps, which are caused by small changes in the orientation of the growth surface or the thickness of the ribbon. Phase contrast imaging using synchrotron radiation is employed to study the defects. It is shown for the first time that the height of a step of 1 µm can be determined directly from the image. An analytical solution for the intensity distribution of the step in the case of fully coherent X-ray radiation is obtained. When the phase shift is small, there is a direct proportionality between contrast and step height, and the inverse problem is easily solved. The height obtained using the phase-contrast-imaging method is confirmed by measurements using atomic force microscopy. To analyze microinclusions, a computer simulation program is used, which allows for assessment of their sizes. We find that the experimental contrast matches the theoretical calculations only if the calculated intensity profile is convolved with a Gaussian function. The full width at half maximum of the Gaussian is independently obtained from preliminary measurements.

Abstract Image

用直线x射线相衬成像技术研究基底面蓝宝石带中重金属的表面形貌和内含物
本文介绍了用斯捷潘诺夫法生长蓝宝石带的表面微台阶和体积中重金属夹杂物的研究结果。基底面蓝宝石带表现出低密度的台阶,这是由生长面取向或带厚度的微小变化引起的。采用同步辐射相衬成像技术对缺陷进行了研究。这是第一次可以直接从图像中确定1µm的台阶高度。得到了全相干x射线辐射情况下阶跃强度分布的解析解。当相移较小时,对比度与阶跃高度成正比,反问题容易解决。通过原子力显微镜的测量证实了用相衬成像方法得到的高度。为了分析微内含物,使用了一个计算机模拟程序,可以评估它们的大小。我们发现,只有当计算的强度分布与高斯函数卷积时,实验对比才能与理论计算相匹配。高斯峰半最大值处的全宽度是由初步测量独立得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信