Fractional-order energy equation of a fully wet longitudinal fin with convective–radiative heat exchange through Sumudu transform analysis

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Manohar R. Gombi, B. J. Gireesha, P. Venkatesh, M. L. Keerthi, G. K. Ramesh
{"title":"Fractional-order energy equation of a fully wet longitudinal fin with convective–radiative heat exchange through Sumudu transform analysis","authors":"Manohar R. Gombi,&nbsp;B. J. Gireesha,&nbsp;P. Venkatesh,&nbsp;M. L. Keerthi,&nbsp;G. K. Ramesh","doi":"10.1007/s11043-025-09773-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Adomian Decomposition Sumudu Transform Method (ADSTM) is applied to solve a fractional-order problem that involves temperature variations in a fully wet convective–radiative longitudinal fin. Darcy’s law is used in formulating the energy balance equation to take into account the porous nature of the fin. The fractional-order energy balance equation for the fin is solved under two situations: a constant convective heat transfer coefficient and a temperature-dependent convective heat transfer coefficient. The ADSTM solution is compared with numerical results, obtained using the Runge–Kutta–Fehlberg approach. A series solution is obtained, and the roles of various parameters of the fractional-order differential equation are analyzed. It is found that the solution to the fractional-order differential equation outperforms the integer-order solution in modeling the temperature profile of the fin. Furthermore, it is observed that improvements in the wet porous characteristics of the fin lead to a reduction in its temperature.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09773-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The Adomian Decomposition Sumudu Transform Method (ADSTM) is applied to solve a fractional-order problem that involves temperature variations in a fully wet convective–radiative longitudinal fin. Darcy’s law is used in formulating the energy balance equation to take into account the porous nature of the fin. The fractional-order energy balance equation for the fin is solved under two situations: a constant convective heat transfer coefficient and a temperature-dependent convective heat transfer coefficient. The ADSTM solution is compared with numerical results, obtained using the Runge–Kutta–Fehlberg approach. A series solution is obtained, and the roles of various parameters of the fractional-order differential equation are analyzed. It is found that the solution to the fractional-order differential equation outperforms the integer-order solution in modeling the temperature profile of the fin. Furthermore, it is observed that improvements in the wet porous characteristics of the fin lead to a reduction in its temperature.

Abstract Image

阿多米分解苏木杜变换法(ADSTM)被用于求解一个分数阶问题,该问题涉及全湿对流-辐射纵向翅片中的温度变化。在制定能量平衡方程时使用了达西定律,以考虑到鳍片的多孔性。翅片的分数阶能量平衡方程在两种情况下求解:恒定的对流传热系数和随温度变化的对流传热系数。ADSTM 解法与使用 Runge-Kutta-Fehlberg 方法获得的数值结果进行了比较。得到了一个序列解,并分析了分数阶微分方程各种参数的作用。结果发现,在鳍片温度曲线建模方面,分数阶微分方程的求解结果优于整数阶求解结果。此外,还观察到鳍片湿多孔特性的改善导致其温度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信