Pure-Cubic Optical Soliton Solutions of the Nonlinear Schrödinger Equation Including Parabolic Law Nonlinearity in the Absence of the Group Velocity Dispersion
Muslum Ozisik, Selvi Altun Durmus, Aydin Secer, Mustafa Bayram
{"title":"Pure-Cubic Optical Soliton Solutions of the Nonlinear Schrödinger Equation Including Parabolic Law Nonlinearity in the Absence of the Group Velocity Dispersion","authors":"Muslum Ozisik, Selvi Altun Durmus, Aydin Secer, Mustafa Bayram","doi":"10.1007/s10773-025-05950-6","DOIUrl":null,"url":null,"abstract":"<div><p>This article investigates the third-order dimensionless nonlinear Schrödinger equation with a parabolic law media term, while deliberately excluding the group velocity dispersion term, which typically governs the propagation of ultrashort pulses. The Generalized Kudryashov approach, a powerful and novel technique, is applied for the first time to obtain pure-cubic optical soliton solutions for this model. Using this method, bright, kink, and dark soliton solutions are derived. To illustrate the dynamics and physical properties of these solutions, 2D, contour, and 3D visualizations are presented. In particular, 2D plots with carefully selected parameter values are provided to investigate how the presence of the parabolic law media term and the absence of the group velocity dispersion term influence soliton behavior. The results clearly demonstrate the physical relevance of the model and emphasize the effectiveness of the Generalized Kudryashov approach as a reliable technique for obtaining analytical solutions to the equation under consideration.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05950-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the third-order dimensionless nonlinear Schrödinger equation with a parabolic law media term, while deliberately excluding the group velocity dispersion term, which typically governs the propagation of ultrashort pulses. The Generalized Kudryashov approach, a powerful and novel technique, is applied for the first time to obtain pure-cubic optical soliton solutions for this model. Using this method, bright, kink, and dark soliton solutions are derived. To illustrate the dynamics and physical properties of these solutions, 2D, contour, and 3D visualizations are presented. In particular, 2D plots with carefully selected parameter values are provided to investigate how the presence of the parabolic law media term and the absence of the group velocity dispersion term influence soliton behavior. The results clearly demonstrate the physical relevance of the model and emphasize the effectiveness of the Generalized Kudryashov approach as a reliable technique for obtaining analytical solutions to the equation under consideration.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.