T. Volatili, V. Gironelli, L. Luzi, P. Galli, M. M. C. Carafa, E. Tondi
{"title":"Elusive seismogenic sources of historical earthquakes: insights from the Mw 6.8, 1706 Maiella earthquake (central Italy)","authors":"T. Volatili, V. Gironelli, L. Luzi, P. Galli, M. M. C. Carafa, E. Tondi","doi":"10.1007/s10518-025-02110-3","DOIUrl":null,"url":null,"abstract":"<div><p>The central Apennines are renowned for their active NW-SE striking and SW-dipping normal-fault systems responsible for significant seismic events. However, uncertainties persist in attributing some past destructive earthquakes to seismogenic sources, as in the case of the 1706 Maiella earthquake (Mw 6.8, Abruzzi region). This study comprehensively assesses competing source hypotheses derived from the literature and uses geological and geophysical data to constrain their possible fault geometry. Employing a 3D seismogenic source model approach, we rigorously analyze the earthquake-fault association, assessing the misfit between the simulated site intensities and the macroseismic values estimated from the historical accounts. Our findings highlight the complexities in determining a reliable source for the 1706 earthquake. Finally, the best-fit source model was adopted to produce ground motion predictions regarding Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and macroseismic intensity, including site effects, coupling the ground motion model (GMM-ITA18; Lanzano et al. 2019) and the ground motion intensity conversion equation (GMICE; Gomez Capera et al., 2020). The presented outcomes possibly unveil the shaking scenario that occurred in the past and perhaps in the future. These results, shedding light on one of the most relevant unknowns of the Apennine seismicity, offer valuable insights to better constrain the seismic hazard of this region, with implications for seismic risk mitigation strategies.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 4","pages":"1279 - 1296"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02110-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The central Apennines are renowned for their active NW-SE striking and SW-dipping normal-fault systems responsible for significant seismic events. However, uncertainties persist in attributing some past destructive earthquakes to seismogenic sources, as in the case of the 1706 Maiella earthquake (Mw 6.8, Abruzzi region). This study comprehensively assesses competing source hypotheses derived from the literature and uses geological and geophysical data to constrain their possible fault geometry. Employing a 3D seismogenic source model approach, we rigorously analyze the earthquake-fault association, assessing the misfit between the simulated site intensities and the macroseismic values estimated from the historical accounts. Our findings highlight the complexities in determining a reliable source for the 1706 earthquake. Finally, the best-fit source model was adopted to produce ground motion predictions regarding Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and macroseismic intensity, including site effects, coupling the ground motion model (GMM-ITA18; Lanzano et al. 2019) and the ground motion intensity conversion equation (GMICE; Gomez Capera et al., 2020). The presented outcomes possibly unveil the shaking scenario that occurred in the past and perhaps in the future. These results, shedding light on one of the most relevant unknowns of the Apennine seismicity, offer valuable insights to better constrain the seismic hazard of this region, with implications for seismic risk mitigation strategies.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.