{"title":"Perspectives in and on Quantum Theory","authors":"Richard Healey","doi":"10.1007/s10701-025-00838-1","DOIUrl":null,"url":null,"abstract":"<div><p>I take a pragmatist perspective on quantum theory. This is not a view of the world described by quantum theory. In this view quantum theory itself does not describe the physical world (nor our observations, experiences or opinions of it). Instead, the theory offers reliable advice—on when to expect an event of one kind or another, and on how strongly to expect each possible outcome of that event. The event’s actual outcome is a perspectival fact—a fact relative to a physical context of assessment. Measurement outcomes and quantum states are both perspectival. By noticing that each must be relativized to an appropriate physical context one can resolve the measurement problem and the problem of nonlocal action. But if the outcome of a quantum measurement is not an absolute fact, then why should the statistics of such outcomes give us any objective reason to accept quantum theory? One can describe extensions of the scenario of Wigner’s friend in which a statement expressing the outcome of a quantum measurement would be true relative to one such context but not relative to another. However, physical conditions in our world prevent us from realizing such scenarios. Since the outcome of every actual quantum measurement is certified at what is essentially a single context of assessment, the outcome relative to that context is an objective fact in the only sense that matters for science. We should accept quantum theory because the statistics these outcomes display are just those it leads us to expect.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00838-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
I take a pragmatist perspective on quantum theory. This is not a view of the world described by quantum theory. In this view quantum theory itself does not describe the physical world (nor our observations, experiences or opinions of it). Instead, the theory offers reliable advice—on when to expect an event of one kind or another, and on how strongly to expect each possible outcome of that event. The event’s actual outcome is a perspectival fact—a fact relative to a physical context of assessment. Measurement outcomes and quantum states are both perspectival. By noticing that each must be relativized to an appropriate physical context one can resolve the measurement problem and the problem of nonlocal action. But if the outcome of a quantum measurement is not an absolute fact, then why should the statistics of such outcomes give us any objective reason to accept quantum theory? One can describe extensions of the scenario of Wigner’s friend in which a statement expressing the outcome of a quantum measurement would be true relative to one such context but not relative to another. However, physical conditions in our world prevent us from realizing such scenarios. Since the outcome of every actual quantum measurement is certified at what is essentially a single context of assessment, the outcome relative to that context is an objective fact in the only sense that matters for science. We should accept quantum theory because the statistics these outcomes display are just those it leads us to expect.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.