Atomic-scale study on the deformation mechanism of nanofabrication in nickel-based single-crystal superalloys embedded with NbC particles

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bo Song, Wentao Shi, Qiang Lu, Min Zheng, Weihua Chen, Zongxiao Zhu
{"title":"Atomic-scale study on the deformation mechanism of nanofabrication in nickel-based single-crystal superalloys embedded with NbC particles","authors":"Bo Song,&nbsp;Wentao Shi,&nbsp;Qiang Lu,&nbsp;Min Zheng,&nbsp;Weihua Chen,&nbsp;Zongxiao Zhu","doi":"10.1007/s00339-025-08404-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the study of nanofabricated deformation mechanisms of nickel-based single crystal high temperature alloys embedded with NbC particles. The mechanical properties, defect evolution, atomic displacement, shear strain, temperature change and atomic precipitation behaviour of the alloy during nanofabrication are deeply investigated through molecular dynamics simulations. It was found that when the tool machined NbC particles on the substrate surface, it experienced lower tangential forces and friction coefficients compared to when machining NbC particles in the sub-surface position. In the latter case, the NbC particles effectively hindered defect development, leading to a significant increase in temperature. Analysis of atomic displacement trends, shear strain, and Von Mises strain revealed that NbC particles provide better protection to the composite’s interior when located beneath the surface rather than on the surface. Additionally, the heterointerface between NbC particles and the nickel matrix can cause local stress concentration, promoting dislocation nucleation. With continuous energy input during machining, dislocation accumulation occurs, significantly enhancing the alloy’s resistance to deformation. This study provides atomic-scale insights into understanding the effect of NbC particles on the nanofabrication properties of nickel-based high-temperature alloys.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08404-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the study of nanofabricated deformation mechanisms of nickel-based single crystal high temperature alloys embedded with NbC particles. The mechanical properties, defect evolution, atomic displacement, shear strain, temperature change and atomic precipitation behaviour of the alloy during nanofabrication are deeply investigated through molecular dynamics simulations. It was found that when the tool machined NbC particles on the substrate surface, it experienced lower tangential forces and friction coefficients compared to when machining NbC particles in the sub-surface position. In the latter case, the NbC particles effectively hindered defect development, leading to a significant increase in temperature. Analysis of atomic displacement trends, shear strain, and Von Mises strain revealed that NbC particles provide better protection to the composite’s interior when located beneath the surface rather than on the surface. Additionally, the heterointerface between NbC particles and the nickel matrix can cause local stress concentration, promoting dislocation nucleation. With continuous energy input during machining, dislocation accumulation occurs, significantly enhancing the alloy’s resistance to deformation. This study provides atomic-scale insights into understanding the effect of NbC particles on the nanofabrication properties of nickel-based high-temperature alloys.

嵌入 NbC 粒子的镍基单晶超合金纳米加工变形机制的原子尺度研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信