Analysis of near-fault ground motions in the February 2023 Kahramanmaras, Türkiye, earthquake sequence

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Zhiwang Chang, Haoran Wu, Wanheng Li, Zhenxu Yan, Longqiang Peng, Ge Zhu
{"title":"Analysis of near-fault ground motions in the February 2023 Kahramanmaras, Türkiye, earthquake sequence","authors":"Zhiwang Chang,&nbsp;Haoran Wu,&nbsp;Wanheng Li,&nbsp;Zhenxu Yan,&nbsp;Longqiang Peng,&nbsp;Ge Zhu","doi":"10.1007/s10518-025-02101-4","DOIUrl":null,"url":null,"abstract":"<div><p>The southern Türkiye and northern Syria areas were hit on February 2023 by a large earthquake with <i>M</i><sub>w</sub> = 7.8, followed by another large aftershock with <i>M</i><sub>w</sub> = 7.5. The two-earthquake sequence, coupled with a series of smaller aftershocks, caused severe structural and geotechnical damage and fatalities. The objective of this study is to investigate the characteristics of near-fault ground motions observed in the earthquake sequence. To this end, the ground motion intensity measures are firstly compared with existing models; it is shown that PGA and spectral accelerations from both the non-pulse-like and the pulse-like motions are overall captured by the Zhao et al. (Bull Seismol Soc Am 96(3):898–913, 2006, https://doi.org/10.1785/0120050122) model. Subsequently, the velocity pulses in near-fault ground motions are not only quantitatively identified, but are also parameterized using the progressive iterative approach. The identified pulses are then empirically categorized into two groups of records with different causative effects according to the criterion of whether or not non-zero displacements could be visually inspected at the end of the integrated pulse displacement traces. Pulse-like ground motions containing baseline offset are also corrected, and final permanent displacements due to fling-step effects are accordingly derived. To determine the orientations at which the strongest pulses can be observed, two different approaches are employed. It is revealed that the indirect method by seeking the orientation of the maximum PGV appears to be not reliable if it is to find the strongest pulse, at least with respect to the 2023 Türkiye earthquake sequence.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 4","pages":"1349 - 1369"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02101-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The southern Türkiye and northern Syria areas were hit on February 2023 by a large earthquake with Mw = 7.8, followed by another large aftershock with Mw = 7.5. The two-earthquake sequence, coupled with a series of smaller aftershocks, caused severe structural and geotechnical damage and fatalities. The objective of this study is to investigate the characteristics of near-fault ground motions observed in the earthquake sequence. To this end, the ground motion intensity measures are firstly compared with existing models; it is shown that PGA and spectral accelerations from both the non-pulse-like and the pulse-like motions are overall captured by the Zhao et al. (Bull Seismol Soc Am 96(3):898–913, 2006, https://doi.org/10.1785/0120050122) model. Subsequently, the velocity pulses in near-fault ground motions are not only quantitatively identified, but are also parameterized using the progressive iterative approach. The identified pulses are then empirically categorized into two groups of records with different causative effects according to the criterion of whether or not non-zero displacements could be visually inspected at the end of the integrated pulse displacement traces. Pulse-like ground motions containing baseline offset are also corrected, and final permanent displacements due to fling-step effects are accordingly derived. To determine the orientations at which the strongest pulses can be observed, two different approaches are employed. It is revealed that the indirect method by seeking the orientation of the maximum PGV appears to be not reliable if it is to find the strongest pulse, at least with respect to the 2023 Türkiye earthquake sequence.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信