Characterisation of the rigid diaphragm conditions for cross laminated timber floors

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Giuseppe D’Arenzo, Pietro Rigo, Valentino Nicolussi, Luca Pozza, Daniele Casagrande
{"title":"Characterisation of the rigid diaphragm conditions for cross laminated timber floors","authors":"Giuseppe D’Arenzo,&nbsp;Pietro Rigo,&nbsp;Valentino Nicolussi,&nbsp;Luca Pozza,&nbsp;Daniele Casagrande","doi":"10.1007/s10518-024-02025-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a comprehensive numerical study aimed at defining the conditions for which Cross-Laminated Timber (CLT) floor diaphragms of platform-type CLT buildings can be assumed rigid in linear seismic analyses. Numerical analyses are conducted on a regular CLT archetype within a framework of parametric analyses, in which different geometrical and mechanical parameters including the stiffness of the floor panel-to-panel connections, the stiffness of the floor-to-wall connections, the floor span, the distance between two consecutive shear-walls, the lateral stiffness of the shear-walls, and the number of storeys are varied. The conditions to ensure a rigid diaphragm behaviour are derived by calculating the discrepancies in terms of floor displacements, distribution of lateral forces in the shear-walls, and fundamental vibration period of the structure, between numerical models where the floor is modelled with its actual deformability and as rigid. The discrepancies are compared with threshold values given in Eurocode 8 and used to derive the conditions for which CLT floor diaphragms can be assumed rigid. The study reveals that the behaviour of the floor tends toward the rigid diaphragm condition by increasing the stiffness of the floor panel-to-panel connections and the number of storeys, and by decreasing the stiffness of the floor-to-wall connections, the ratio between the distance between two consecutive shear-walls and the floor span, and the stiffness of the shear-walls. Specific threshold values ensuring a rigid diaphragm behaviour are determined for the properties of the system, delivering the geometrical and mechanical conditions for rigid CLT floor diaphragms.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 4","pages":"1759 - 1794"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02025-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02025-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive numerical study aimed at defining the conditions for which Cross-Laminated Timber (CLT) floor diaphragms of platform-type CLT buildings can be assumed rigid in linear seismic analyses. Numerical analyses are conducted on a regular CLT archetype within a framework of parametric analyses, in which different geometrical and mechanical parameters including the stiffness of the floor panel-to-panel connections, the stiffness of the floor-to-wall connections, the floor span, the distance between two consecutive shear-walls, the lateral stiffness of the shear-walls, and the number of storeys are varied. The conditions to ensure a rigid diaphragm behaviour are derived by calculating the discrepancies in terms of floor displacements, distribution of lateral forces in the shear-walls, and fundamental vibration period of the structure, between numerical models where the floor is modelled with its actual deformability and as rigid. The discrepancies are compared with threshold values given in Eurocode 8 and used to derive the conditions for which CLT floor diaphragms can be assumed rigid. The study reveals that the behaviour of the floor tends toward the rigid diaphragm condition by increasing the stiffness of the floor panel-to-panel connections and the number of storeys, and by decreasing the stiffness of the floor-to-wall connections, the ratio between the distance between two consecutive shear-walls and the floor span, and the stiffness of the shear-walls. Specific threshold values ensuring a rigid diaphragm behaviour are determined for the properties of the system, delivering the geometrical and mechanical conditions for rigid CLT floor diaphragms.

交叉层压木地板的刚性膜片条件的特征
本文提出了一项全面的数值研究,旨在确定在线性地震分析中平台型CLT建筑的交叉层合木(CLT)地板隔板可以假定为刚性的条件。在参数分析框架下,对一个规则的CLT原型进行了数值分析,其中不同的几何和力学参数包括楼板间连接的刚度、楼板间连接的刚度、楼板跨度、两个连续剪力墙之间的距离、剪力墙的侧移刚度和层数。通过计算地板位移、剪力墙侧力分布和结构基本振动周期方面的差异,得出了确保刚性隔膜行为的条件。在数值模型中,地板是根据其实际可变形性和刚性进行建模的。将差异与欧洲规范8中给出的阈值进行比较,并用于推导CLT地板隔板可以假定为刚性的条件。研究表明,通过增加楼板连接刚度和楼板层数,降低楼板连接刚度、连续两剪力墙间距与楼板跨度之比以及剪力墙刚度,楼板的性能趋于刚性隔膜状态。根据系统的特性确定了确保刚性隔膜性能的特定阈值,为刚性CLT地板隔膜提供几何和机械条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信