A characterization result for compactness of semicommutators of Toeplitz operators

IF 0.6 3区 数学 Q3 MATHEMATICS
R. Rajan
{"title":"A characterization result for compactness of semicommutators of Toeplitz operators","authors":"R. Rajan","doi":"10.1007/s10474-025-01513-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the compactness of semicommutators of Toeplitz operators on Hardy spaces and Bergman spaces, focusing on the operators of the form <span>\\(T^{H}_{|f|^{2}}-T^{H}_{f}T^{H}_{\\overline{f}}\\)</span> and <span>\\(T^{H}_{|\\tilde{f}|^{2}}-T^{H}_{\\tilde{f}}T^{H}_{\\overline{\\tilde{f}}} \\)</span>, where <span>\\(\\tilde{f}(z)=f(z^{-1})\\)</span>. We establish that the compactness of these operators can be characterized through the convergence of the sequence <span>\\(\\{T^{H}_{n}(|f|^{2})-T^{H}_{n}(f)T^{H}_{n}(\\overline{f})\\}\\)</span> in the sense of singular value clustering. This provides a method for determining the compactness of semicommutators by examining the corresponding Toeplitz matrices derived from the Fourier coefficients of the symbol functions.\nFurthermore, we identify the function space <span>\\(VMO \\cap L^{\\infty}(\\mathbb{T})\\)</span> as the largest <span>\\(C^{*}\\)</span>-subalgebra of <span>\\(L^{\\infty}(\\mathbb{T})\\)</span> such that, for any <span>\\(f, g \\in VMO \\cap L^{\\infty}(\\mathbb{T}) \\)</span>, sequence <span>\\(\\{T^{H}_{n}(fg)-T^{H}_{n}(f)T^{H}_{n}(g)\\}\\)</span> converges in terms of singular value clustering. It is already known that <span>\\( VMO \\cap L^{\\infty}(\\mathbb{T})\\)</span> is the largest <span>\\(C^{*}\\)</span>-subalgebra of <span>\\(L^{\\infty}(\\mathbb{T})\\)</span> such that, for any <span>\\(f, g \\in VMO \\cap L^{\\infty}(\\mathbb{T}) \\)</span>, the operator <span>\\(T^{H}_{fg}-T^{H}_{f}T^{H}_{g}\\)</span> is compact. Similar considerations are made for Bergman spaces <span>\\(A^{2}(\\mathbb{D})\\)</span>, where we obtain partial results. This work links operator theory, numerical linear algebra, and function spaces, providing new insights into the compactness properties of Toeplitz operators and their semicommutators.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"175 1","pages":"286 - 304"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01513-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the compactness of semicommutators of Toeplitz operators on Hardy spaces and Bergman spaces, focusing on the operators of the form \(T^{H}_{|f|^{2}}-T^{H}_{f}T^{H}_{\overline{f}}\) and \(T^{H}_{|\tilde{f}|^{2}}-T^{H}_{\tilde{f}}T^{H}_{\overline{\tilde{f}}} \), where \(\tilde{f}(z)=f(z^{-1})\). We establish that the compactness of these operators can be characterized through the convergence of the sequence \(\{T^{H}_{n}(|f|^{2})-T^{H}_{n}(f)T^{H}_{n}(\overline{f})\}\) in the sense of singular value clustering. This provides a method for determining the compactness of semicommutators by examining the corresponding Toeplitz matrices derived from the Fourier coefficients of the symbol functions. Furthermore, we identify the function space \(VMO \cap L^{\infty}(\mathbb{T})\) as the largest \(C^{*}\)-subalgebra of \(L^{\infty}(\mathbb{T})\) such that, for any \(f, g \in VMO \cap L^{\infty}(\mathbb{T}) \), sequence \(\{T^{H}_{n}(fg)-T^{H}_{n}(f)T^{H}_{n}(g)\}\) converges in terms of singular value clustering. It is already known that \( VMO \cap L^{\infty}(\mathbb{T})\) is the largest \(C^{*}\)-subalgebra of \(L^{\infty}(\mathbb{T})\) such that, for any \(f, g \in VMO \cap L^{\infty}(\mathbb{T}) \), the operator \(T^{H}_{fg}-T^{H}_{f}T^{H}_{g}\) is compact. Similar considerations are made for Bergman spaces \(A^{2}(\mathbb{D})\), where we obtain partial results. This work links operator theory, numerical linear algebra, and function spaces, providing new insights into the compactness properties of Toeplitz operators and their semicommutators.

Toeplitz算子半变子紧致性的一个表征结果
本文研究了Hardy空间和Bergman空间上Toeplitz算子的半变子的紧性,重点研究了\(T^{H}_{|f|^{2}}-T^{H}_{f}T^{H}_{\overline{f}}\)和\(T^{H}_{|\tilde{f}|^{2}}-T^{H}_{\tilde{f}}T^{H}_{\overline{\tilde{f}}} \)形式的算子,其中\(\tilde{f}(z)=f(z^{-1})\)。在奇异值聚类的意义下,我们建立了这些算子的紧性可以通过序列\(\{T^{H}_{n}(|f|^{2})-T^{H}_{n}(f)T^{H}_{n}(\overline{f})\}\)的收敛性来表征。这提供了一种通过检查由符号函数的傅立叶系数导出的相应的Toeplitz矩阵来确定半变子紧性的方法。此外,我们将函数空间\(VMO \cap L^{\infty}(\mathbb{T})\)确定为\(L^{\infty}(\mathbb{T})\)的最大\(C^{*}\) -子代数,使得对于任何\(f, g \in VMO \cap L^{\infty}(\mathbb{T}) \),序列\(\{T^{H}_{n}(fg)-T^{H}_{n}(f)T^{H}_{n}(g)\}\)在奇异值聚类方面收敛。我们已经知道\( VMO \cap L^{\infty}(\mathbb{T})\)是\(L^{\infty}(\mathbb{T})\)的最大的\(C^{*}\) -子代数,对于任何\(f, g \in VMO \cap L^{\infty}(\mathbb{T}) \),操作符\(T^{H}_{fg}-T^{H}_{f}T^{H}_{g}\)都是紧的。对于Bergman空间\(A^{2}(\mathbb{D})\)也做了类似的考虑,我们得到了部分结果。这项工作将算子理论、数值线性代数和函数空间联系起来,为Toeplitz算子及其半变子的紧性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信