Comparative analysis of drug release kinetics in polyethylene oxide and xanthan gum matrices with various excipients

Haja Muhamad, Nihad Mawla, Saedah Dereiah, Adam Ward, James Williamson and Kofi Asare-Addo
{"title":"Comparative analysis of drug release kinetics in polyethylene oxide and xanthan gum matrices with various excipients","authors":"Haja Muhamad, Nihad Mawla, Saedah Dereiah, Adam Ward, James Williamson and Kofi Asare-Addo","doi":"10.1039/D4PM00296B","DOIUrl":null,"url":null,"abstract":"<p >This study aimed to investigate the effect of various pharmaceutical excipients on the drug release kinetics of extended-release formulations composed of polyethylene oxide (PEO) and xanthan gum (XG), using propranolol hydrochloride (PPN) as the model drug. The formulations contained different ratios (1 : 3, 1 : 1, and 3 : 1 w/w) of PEO or XG to either lactose, dibasic calcium phosphate (DCP), or microcrystalline cellulose (MCC). Compaction analysis revealed that formulations that contain higher excipient content exhibit increased porosity and decreased hardness values. Contact angle measurements indicated that formulations with higher excipient content, particularly with lactose, displayed lower contact angles, which is indicative of increased hydrophilicity. After the <em>in vitro</em> dissolution studies were conducted, the dissolution efficiency (DE), mean dissolution time (MDT), mean dissolution rate (MDR), and similarity factors (<em>f</em><small><sub>2</sub></small>) were analysed. The findings showed that a higher amount of lactose in both PEO and XG formulations resulted in faster drug release, with the PEO : lactose 1 : 3 ratio achieving the highest DE (64 ± 8%) and the shortest MDT (77 ± 10 min). Similarly, the XG : lactose 1 : 3 ratio exhibited the highest DE (61 ± 2%) and fastest MDR (0.20 ± 0.01% min<small><sup>−1</sup></small>), although the effect was less pronounced compared to PEO formulations. The kinetic analysis showed that most PEO formulations followed the Peppas model, indicating non-Fickian transport driven by both diffusion and polymer erosion mechanisms. However, most of the XG formulations followed the Higuchi model. The similarity factors (<em>f</em><small><sub>2</sub></small>) revealed the influence of excipient type and ratio on the dissolution profiles. Formulations containing a higher amount of MCC displayed higher similarity with the pure polymer profiles. These results give important insights into how excipients can be used to optimise polymeric matrices to regulate drug release in extended-release formulations.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 303-317"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00296b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00296b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the effect of various pharmaceutical excipients on the drug release kinetics of extended-release formulations composed of polyethylene oxide (PEO) and xanthan gum (XG), using propranolol hydrochloride (PPN) as the model drug. The formulations contained different ratios (1 : 3, 1 : 1, and 3 : 1 w/w) of PEO or XG to either lactose, dibasic calcium phosphate (DCP), or microcrystalline cellulose (MCC). Compaction analysis revealed that formulations that contain higher excipient content exhibit increased porosity and decreased hardness values. Contact angle measurements indicated that formulations with higher excipient content, particularly with lactose, displayed lower contact angles, which is indicative of increased hydrophilicity. After the in vitro dissolution studies were conducted, the dissolution efficiency (DE), mean dissolution time (MDT), mean dissolution rate (MDR), and similarity factors (f2) were analysed. The findings showed that a higher amount of lactose in both PEO and XG formulations resulted in faster drug release, with the PEO : lactose 1 : 3 ratio achieving the highest DE (64 ± 8%) and the shortest MDT (77 ± 10 min). Similarly, the XG : lactose 1 : 3 ratio exhibited the highest DE (61 ± 2%) and fastest MDR (0.20 ± 0.01% min−1), although the effect was less pronounced compared to PEO formulations. The kinetic analysis showed that most PEO formulations followed the Peppas model, indicating non-Fickian transport driven by both diffusion and polymer erosion mechanisms. However, most of the XG formulations followed the Higuchi model. The similarity factors (f2) revealed the influence of excipient type and ratio on the dissolution profiles. Formulations containing a higher amount of MCC displayed higher similarity with the pure polymer profiles. These results give important insights into how excipients can be used to optimise polymeric matrices to regulate drug release in extended-release formulations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信