Tumor immunotherapy by plasmid DNAs encoding adenovirus virus-associated RNA†

Tomoko Ito, Takayuki Yoshimoto, Izuru Mizoguchi and Yoshiyuki Koyama
{"title":"Tumor immunotherapy by plasmid DNAs encoding adenovirus virus-associated RNA†","authors":"Tomoko Ito, Takayuki Yoshimoto, Izuru Mizoguchi and Yoshiyuki Koyama","doi":"10.1039/D4PM00219A","DOIUrl":null,"url":null,"abstract":"<p >Immunotherapy has become a most promising weapon for cancer treatment; however, tumor antigens generally exhibit low immunogenicity, limiting its effectiveness. In contrast, viral infections efficiently trigger innate and adaptive immunity. This is attributed to the high immunogenicity of microbial antigens and also to the activation of pattern recognition receptors such as retinoic acid-inducible gene-I (RIG-I). Upon recognizing viral RNA, RIG-I induces secretion of type-I interferons (IFNs). Type I IFNs not only invite antiviral effects but also plays an effective role in cancer immunotherapy. Therefore, activation of RIG-I by the ligands has gained attention as a novel cancer immunotherapy in recent years. Virus-associated RNAs (VA-RNA I and VA-RNA II) are non-coding small RNAs generated from the adenovirus genome. VA-RNA I strongly activates RIG-I, leading to type-I IFN production. In this study, plasmid DNAs encoding both VA-RNA I and II [pDNA(I,II)] or only VA-RNA I [pDNA(I)] were prepared, and their IFN inducing and anti-tumor effects were investigated. In culture cells, introduction of pDNA(I,II) or pDNA(I) effectively induced both IFN-α and IFN-β production. Both plasmids significantly inhibited tumor growth in mice. pDNA(I) exhibited superior IFN-inducing and anti-tumor effects compared to pDNA(I,II). VA-RNA I gene administration holds promise as a novel anti-tumor immunotherapy strategy.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 257-263"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00219a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00219a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy has become a most promising weapon for cancer treatment; however, tumor antigens generally exhibit low immunogenicity, limiting its effectiveness. In contrast, viral infections efficiently trigger innate and adaptive immunity. This is attributed to the high immunogenicity of microbial antigens and also to the activation of pattern recognition receptors such as retinoic acid-inducible gene-I (RIG-I). Upon recognizing viral RNA, RIG-I induces secretion of type-I interferons (IFNs). Type I IFNs not only invite antiviral effects but also plays an effective role in cancer immunotherapy. Therefore, activation of RIG-I by the ligands has gained attention as a novel cancer immunotherapy in recent years. Virus-associated RNAs (VA-RNA I and VA-RNA II) are non-coding small RNAs generated from the adenovirus genome. VA-RNA I strongly activates RIG-I, leading to type-I IFN production. In this study, plasmid DNAs encoding both VA-RNA I and II [pDNA(I,II)] or only VA-RNA I [pDNA(I)] were prepared, and their IFN inducing and anti-tumor effects were investigated. In culture cells, introduction of pDNA(I,II) or pDNA(I) effectively induced both IFN-α and IFN-β production. Both plasmids significantly inhibited tumor growth in mice. pDNA(I) exhibited superior IFN-inducing and anti-tumor effects compared to pDNA(I,II). VA-RNA I gene administration holds promise as a novel anti-tumor immunotherapy strategy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信