Mudasir Younis Sofi, Mohd. Shahid Khan and M. Ajmal Khan
{"title":"Semiconducting ferromagnetism and thermoelectric performance of Rb2GeMI6 (M = V, Ni, Mn): a computational perspective","authors":"Mudasir Younis Sofi, Mohd. Shahid Khan and M. Ajmal Khan","doi":"10.1039/D4MA01091D","DOIUrl":null,"url":null,"abstract":"<p >We present a comprehensive first-principles investigation into the structural, electronic, magnetic, and transport properties of halide double perovskites Rb<small><sub>2</sub></small>GeMI<small><sub>6</sub></small> (M = V, Mn, Ni) utilizing density functional theory (DFT). Structural stability is rigorously validated through geometric optimization, mechanical stability criteria, and tolerance factor analysis, confirming the feasibility of these compounds in the cubic <em>Fm</em><img><em>m</em> phase. Total energy calculations based on the Birch–Murnaghan equation of state establish a robust ferromagnetic ground state, further corroborated by positive Curie–Weiss constants of 98 K (Rb<small><sub>2</sub></small>GeVI<small><sub>6</sub></small>), 90 K (Rb<small><sub>2</sub></small>GeMnI<small><sub>6</sub></small>), and 95 K (Rb<small><sub>2</sub></small>GeNiI<small><sub>6</sub></small>), underscoring their intrinsic ferromagnetic behavior. Electronic structure analyses performed using both the generalized gradient approximation (GGA) and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential reveal that these materials exhibit semiconducting ferromagnetism, characterized by a significant spin-splitting gap. The underlying mechanism is traced to the crystal field effects influencing the d-orbitals of the transition metal atoms. Magnetic moment calculations indicate values of 3<em>μ</em><small><sub>B</sub></small>, 5<em>μ</em><small><sub>B</sub></small>, and 2<em>μ</em><small><sub>B</sub></small> for the V-, Mn-, and Ni-based compounds, respectively, underscoring the pivotal role of transition metals in governing their magnetic properties. Furthermore, Curie temperature estimations of 530.39 K (Rb<small><sub>2</sub></small>GeVI<small><sub>6</sub></small>), 580.72 K (Rb<small><sub>2</sub></small>GeMnI<small><sub>6</sub></small>), and 440.47 K (Rb<small><sub>2</sub></small>GeNiI<small><sub>6</sub></small>) significantly exceed room temperature, reinforcing their potential for spintronic applications. A rigorous thermodynamic analysis, incorporating vibrational contributions to internal energy, Helmholtz free energy, entropy, and specific heat, confirms the stability of these materials across a broad temperature range. Finally, an in-depth investigation of transport properties, considering both temperature and chemical potential dependence of the Seebeck coefficient, electrical conductivity, and figure of merit (<em>zT</em>), highlights their exceptional thermoelectric potential. Notably, the materials exhibit remarkably low thermal conductivities of 3.10 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> (Rb<small><sub>2</sub></small>GeVI<small><sub>6</sub></small>), 2.05 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> (Rb<small><sub>2</sub></small>GeMnI<small><sub>6</sub></small>), and 1.57 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> (Rb<small><sub>2</sub></small>GeNiI<small><sub>6</sub></small>), translating into impressive <em>zT</em> values of 1.00, 0.99, and 0.97 at room temperature. Overall, this study demonstrates that Rb<small><sub>2</sub></small>GeMI<small><sub>6</sub></small> halide perovskites exhibit a unique synergy of structural stability, ferromagnetic semiconducting behavior, and high thermoelectric efficiency, positioning them as promising candidates for next-generation spintronic devices, thermoelectric energy harvesting, and sustainable energy technologies.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 6","pages":" 2071-2089"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01091d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01091d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a comprehensive first-principles investigation into the structural, electronic, magnetic, and transport properties of halide double perovskites Rb2GeMI6 (M = V, Mn, Ni) utilizing density functional theory (DFT). Structural stability is rigorously validated through geometric optimization, mechanical stability criteria, and tolerance factor analysis, confirming the feasibility of these compounds in the cubic Fmm phase. Total energy calculations based on the Birch–Murnaghan equation of state establish a robust ferromagnetic ground state, further corroborated by positive Curie–Weiss constants of 98 K (Rb2GeVI6), 90 K (Rb2GeMnI6), and 95 K (Rb2GeNiI6), underscoring their intrinsic ferromagnetic behavior. Electronic structure analyses performed using both the generalized gradient approximation (GGA) and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential reveal that these materials exhibit semiconducting ferromagnetism, characterized by a significant spin-splitting gap. The underlying mechanism is traced to the crystal field effects influencing the d-orbitals of the transition metal atoms. Magnetic moment calculations indicate values of 3μB, 5μB, and 2μB for the V-, Mn-, and Ni-based compounds, respectively, underscoring the pivotal role of transition metals in governing their magnetic properties. Furthermore, Curie temperature estimations of 530.39 K (Rb2GeVI6), 580.72 K (Rb2GeMnI6), and 440.47 K (Rb2GeNiI6) significantly exceed room temperature, reinforcing their potential for spintronic applications. A rigorous thermodynamic analysis, incorporating vibrational contributions to internal energy, Helmholtz free energy, entropy, and specific heat, confirms the stability of these materials across a broad temperature range. Finally, an in-depth investigation of transport properties, considering both temperature and chemical potential dependence of the Seebeck coefficient, electrical conductivity, and figure of merit (zT), highlights their exceptional thermoelectric potential. Notably, the materials exhibit remarkably low thermal conductivities of 3.10 W m−1 K−1 (Rb2GeVI6), 2.05 W m−1 K−1 (Rb2GeMnI6), and 1.57 W m−1 K−1 (Rb2GeNiI6), translating into impressive zT values of 1.00, 0.99, and 0.97 at room temperature. Overall, this study demonstrates that Rb2GeMI6 halide perovskites exhibit a unique synergy of structural stability, ferromagnetic semiconducting behavior, and high thermoelectric efficiency, positioning them as promising candidates for next-generation spintronic devices, thermoelectric energy harvesting, and sustainable energy technologies.
我们利用密度泛函理论(DFT)对卤化物双钙钛矿Rb2GeMI6 (M = V, Mn, Ni)的结构、电子、磁性和输运性质进行了全面的第一性原理研究。通过几何优化、机械稳定性标准和容差因子分析严格验证了结构稳定性,证实了这些化合物在立方Fmm相中的可行性。基于Birch-Murnaghan状态方程的总能量计算建立了一个强大的铁磁基态,进一步证实了居里-魏斯常数为正的98 K (Rb2GeVI6), 90 K (Rb2GeMnI6)和95 K (Rb2GeNiI6),强调了它们的固有铁磁行为。利用广义梯度近似(GGA)和trans - blaha修正的Becke-Johnson (TB-mBJ)势进行的电子结构分析表明,这些材料表现出半导体铁磁性,其特征是显著的自旋分裂间隙。其基本机制可以追溯到影响过渡金属原子d轨道的晶体场效应。磁矩计算表明,V基、Mn基和ni基化合物的磁矩值分别为3μB、5μB和2μB,这表明过渡金属在控制其磁性能中的关键作用。此外,530.39 K (Rb2GeVI6)、580.72 K (Rb2GeMnI6)和440.47 K (Rb2GeNiI6)的居里温度估计显著高于室温,增强了它们在自旋电子应用中的潜力。严格的热力学分析,结合振动对内能、亥姆霍兹自由能、熵和比热的贡献,证实了这些材料在很宽的温度范围内的稳定性。最后,深入研究了输运性质,考虑了塞贝克系数、电导率和优值图(zT)对温度和化学势的依赖,突出了它们特殊的热电势。值得注意的是,这些材料的导热系数非常低,分别为3.10 W m−1 K−1 (Rb2GeVI6)、2.05 W m−1 K−1 (Rb2GeMnI6)和1.57 W m−1 K−1 (Rb2GeNiI6),室温下的zT值分别为1.00、0.99和0.97。总体而言,本研究表明,Rb2GeMI6卤化物钙钛矿具有独特的结构稳定性、铁磁性半导体行为和高热电效率的协同作用,使其成为下一代自旋电子器件、热电能量收集和可持续能源技术的有希望的候选国。