Unzipped MWCNT/polypyrrole hybrid composites: a pathway to high-performance asymmetric supercapacitors†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shilpa Simon, Letcy V. Theresa and Sreeja P. B.
{"title":"Unzipped MWCNT/polypyrrole hybrid composites: a pathway to high-performance asymmetric supercapacitors†","authors":"Shilpa Simon, Letcy V. Theresa and Sreeja P. B.","doi":"10.1039/D4MA01270D","DOIUrl":null,"url":null,"abstract":"<p >A novel method has been developed for the conversion of multi-walled carbon nanotubes (MWCNTs) into unzipped MWCNTs (UzMWCNT) using a modified Hummer's method followed by reduction. This technique allows for the controlled modification of MWCNTs in both transverse and longitudinal directions. The UzMWCNT exhibits unique structural characteristics that combine the properties of 1D nanotubes and graphene-like features. The UzMWCNT/PPy composite exhibited an impressive specific capacitance of 944 F g<small><sup>−1</sup></small> along with excellent cycling stability, retaining 92% of its capacitance after 5000 cycles. For the UzMWCNT/PPy//AC composite, the gravimetric capacitance decreased with increasing current density, from 400 F g<small><sup>−1</sup></small> at 1.0 A g<small><sup>−1</sup></small> to 162 F g<small><sup>−1</sup></small> at 2.5 A g<small><sup>−1</sup></small>. Furthermore, the UzMWCNT/PPy//AC composite demonstrated outstanding long-term durability, retaining approximately 95% of its capacitance after 5000 cycles at a current density of 5 A g<small><sup>−1</sup></small>, underscoring its excellent cycling stability. This research paves the way for the development of high-performance supercapacitor electrodes using hybrid materials derived from MWCNTs.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 6","pages":" 2002-2015"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01270d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01270d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel method has been developed for the conversion of multi-walled carbon nanotubes (MWCNTs) into unzipped MWCNTs (UzMWCNT) using a modified Hummer's method followed by reduction. This technique allows for the controlled modification of MWCNTs in both transverse and longitudinal directions. The UzMWCNT exhibits unique structural characteristics that combine the properties of 1D nanotubes and graphene-like features. The UzMWCNT/PPy composite exhibited an impressive specific capacitance of 944 F g−1 along with excellent cycling stability, retaining 92% of its capacitance after 5000 cycles. For the UzMWCNT/PPy//AC composite, the gravimetric capacitance decreased with increasing current density, from 400 F g−1 at 1.0 A g−1 to 162 F g−1 at 2.5 A g−1. Furthermore, the UzMWCNT/PPy//AC composite demonstrated outstanding long-term durability, retaining approximately 95% of its capacitance after 5000 cycles at a current density of 5 A g−1, underscoring its excellent cycling stability. This research paves the way for the development of high-performance supercapacitor electrodes using hybrid materials derived from MWCNTs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信