Enhancement of the pseudocapacitive performance of iron hexacyanoferrate through porosity engineering: fabrication of an environment-friendly symmetric coin-cell†

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Roshni Begum, Sudipta Goswami, Sudip Kundu, Rausan Kabir, Sachindra Nath Das, Dipten Bhattacharya, Asiful H. Seikh and Chandan Kumar Ghosh
{"title":"Enhancement of the pseudocapacitive performance of iron hexacyanoferrate through porosity engineering: fabrication of an environment-friendly symmetric coin-cell†","authors":"Roshni Begum, Sudipta Goswami, Sudip Kundu, Rausan Kabir, Sachindra Nath Das, Dipten Bhattacharya, Asiful H. Seikh and Chandan Kumar Ghosh","doi":"10.1039/D4NJ05154H","DOIUrl":null,"url":null,"abstract":"<p >In the last decade, iron hexacyanoferrate (FeHCF) or Prussian blue (PB) has become one of the most important low-cost cathode materials for supercapacitor applications due to its highly porous 3D network structure and high surface area. Presently, pure FeHCF nanocubes with two different sizes have been synthesized <em>via</em> a facile, easy reflux technique, wherein we have identified that pore characteristics play an important role in specific capacitance. Importantly, we have obtained the highest specific capacitance of ∼340 F g<small><sup>−1</sup></small> at a 2 mV s<small><sup>−1</sup></small> scan rate from mesoporous nanocubes. In contrast, microporous nanocubes exhibit much lower capacitance in the presence of 1.0 M Na<small><sub>2</sub></small>SO<small><sub>4</sub></small> as an environment-friendly electrolyte. In addition, our study illustrates good capacitive retention (∼73%) up to 7000 cycles of operation indicating good reversibility of electrolytic ion transfer. Furthermore, we have synthesized a coin cell with an energy density of ∼4.6 W h kg<small><sup>−1</sup></small> and power density of ∼973 W kg<small><sup>−1</sup></small>, which will be beneficial for high-power applications. Herein, we believe that our studies reveal the potency of FeHCF nanoparticles as an electrode material for biocompatible pseudocapacitive energy storage devices.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 12","pages":" 4780-4792"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05154h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the last decade, iron hexacyanoferrate (FeHCF) or Prussian blue (PB) has become one of the most important low-cost cathode materials for supercapacitor applications due to its highly porous 3D network structure and high surface area. Presently, pure FeHCF nanocubes with two different sizes have been synthesized via a facile, easy reflux technique, wherein we have identified that pore characteristics play an important role in specific capacitance. Importantly, we have obtained the highest specific capacitance of ∼340 F g−1 at a 2 mV s−1 scan rate from mesoporous nanocubes. In contrast, microporous nanocubes exhibit much lower capacitance in the presence of 1.0 M Na2SO4 as an environment-friendly electrolyte. In addition, our study illustrates good capacitive retention (∼73%) up to 7000 cycles of operation indicating good reversibility of electrolytic ion transfer. Furthermore, we have synthesized a coin cell with an energy density of ∼4.6 W h kg−1 and power density of ∼973 W kg−1, which will be beneficial for high-power applications. Herein, we believe that our studies reveal the potency of FeHCF nanoparticles as an electrode material for biocompatible pseudocapacitive energy storage devices.

Abstract Image

通过孔隙工程提高六氰高铁的赝电容性能:一种环境友好型对称硬币电池的制备
在过去的十年中,六氰高铁(FeHCF)或普鲁士蓝(PB)由于其高多孔三维网络结构和高表面积而成为超级电容器应用中最重要的低成本正极材料之一。目前,两种不同尺寸的纯FeHCF纳米立方体已经通过一种简单、容易的回流技术合成,其中我们已经确定孔隙特征在比电容中起重要作用。重要的是,我们从介孔纳米立方体中获得了在2 mV s−1扫描速率下的最高比电容为~ 340 F g−1。相比之下,微孔纳米立方在1.0 M Na2SO4作为环境友好电解质存在时表现出更低的电容。此外,我们的研究表明,良好的电容保持(~ 73%)长达7000次的操作循环,表明良好的电解离子转移可逆性。此外,我们已经合成了能量密度为~ 4.6 W h kg - 1,功率密度为~ 973 W kg - 1的硬币电池,这将有利于高功率应用。在此,我们相信我们的研究揭示了FeHCF纳米颗粒作为生物相容性假电容储能装置电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信