Localization With Joint Diffusion-Based Molecular Communication and Sensing Systems: Fundamental Limits and Tradeoffs

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Flavio Zabini
{"title":"Localization With Joint Diffusion-Based Molecular Communication and Sensing Systems: Fundamental Limits and Tradeoffs","authors":"Flavio Zabini","doi":"10.1109/TMBMC.2024.3463672","DOIUrl":null,"url":null,"abstract":"This paper introduces and examines a novel joint communication and sensing system based on molecular diffusion. Using a configuration of at least four fully absorbing spherical receivers, the proposed system achieves precise 3D-localization of a pointwise transmitter by counting the same molecules emitted for communication purposes. We develop an analytical framework to explore the fundamental limits of communication and localization within this context. Exact closed-form expressions for the bit error probability and the Cramér-Rao bound on localization error are derived, considering both Poisson concentration and timing transmitter models, with and without accounting for molecule degradation. For the first time, theoretical trade-offs between communication and localization performance are established, taking inter-symbol interference and molecule degradation into account. In scenarios without molecule degradation, inter-symbol interference detrimentally affects communication but enhances localization. Conversely, the introduction of degradation improves communication performance but partially compromises localization effectiveness. These trade-offs are navigated by adjusting number of transmitted symbols or degradation rate, respectively. Furthermore, we compare communication and localization ranges, alongside the associated costs measured in terms of average emitted molecules required to meet performance requirements.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 1","pages":"13-29"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684284","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684284/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces and examines a novel joint communication and sensing system based on molecular diffusion. Using a configuration of at least four fully absorbing spherical receivers, the proposed system achieves precise 3D-localization of a pointwise transmitter by counting the same molecules emitted for communication purposes. We develop an analytical framework to explore the fundamental limits of communication and localization within this context. Exact closed-form expressions for the bit error probability and the Cramér-Rao bound on localization error are derived, considering both Poisson concentration and timing transmitter models, with and without accounting for molecule degradation. For the first time, theoretical trade-offs between communication and localization performance are established, taking inter-symbol interference and molecule degradation into account. In scenarios without molecule degradation, inter-symbol interference detrimentally affects communication but enhances localization. Conversely, the introduction of degradation improves communication performance but partially compromises localization effectiveness. These trade-offs are navigated by adjusting number of transmitted symbols or degradation rate, respectively. Furthermore, we compare communication and localization ranges, alongside the associated costs measured in terms of average emitted molecules required to meet performance requirements.
与联合扩散为基础的分子通信和传感系统的定位:基本限制和权衡
本文介绍并研究了一种基于分子扩散的新型联合通信与传感系统。使用至少四个完全吸收的球形接收器的配置,该系统通过计算为通信目的发射的相同分子来实现点向发射器的精确3d定位。我们开发了一个分析框架来探索在这种背景下交流和本地化的基本限制。在考虑泊松浓度和定时发射机模型,考虑和不考虑分子降解的情况下,导出了误码率和定位误差的cram r- rao界的精确封闭表达式。第一次建立了通信和定位性能之间的理论权衡,考虑了符号间干扰和分子降解。在没有分子降解的情况下,符号间干扰不利于通信,但增强了定位。相反,降级的引入提高了通信性能,但部分地损害了定位效率。这些权衡分别通过调整传输符号的数量或降级率来实现。此外,我们还比较了通信和定位范围,以及根据满足性能要求所需的平均发射分子来衡量的相关成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信