A Tunable Magnetic Bias Circuit With Zero Static Power Consumption

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yixiao Ding;Xuan Wang;Mark G. Allen
{"title":"A Tunable Magnetic Bias Circuit With Zero Static Power Consumption","authors":"Yixiao Ding;Xuan Wang;Mark G. Allen","doi":"10.1109/LMAG.2025.3541915","DOIUrl":null,"url":null,"abstract":"Quasi-static magnetic fields can be used to modulate the magnetic and electrical properties of many magnetic materials, thereby enabling the operation of various magnetic devices, such as multiferroic magnetic field sensors and ferro/ferrimagnetic magneto-static wave filters. We present a magnetic circuit designed to produce a tunable dc magnetic bias field and detail its operating principle. The magnitude of the bias field can be electrically tuned to achieve a desired magnetic field; when not being switched, the achieved field is maintained with zero static power consumption. The magnetic circuit comprises two distinct types of permanent magnets: an NdFeB magnet with relatively high coercivity and an AlNiCo V magnet with relatively low coercivity combined with a tuning coil for adjusting its magnetization. Soft magnetic yoke pieces link the permanent magnets and also define an air gap. Pulses of current through the coil will adjust the remanence of the AlNiCo magnet, thereby changing the flux and field in the air gap. A magnetic bias circuit with a compact volume of 0.27 cm<sup>3</sup> has been constructed, providing an adjustable dc magnetic field with a tuning range of 3.7 to 288.5 mT within a 1 mm air gap.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10891799/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-static magnetic fields can be used to modulate the magnetic and electrical properties of many magnetic materials, thereby enabling the operation of various magnetic devices, such as multiferroic magnetic field sensors and ferro/ferrimagnetic magneto-static wave filters. We present a magnetic circuit designed to produce a tunable dc magnetic bias field and detail its operating principle. The magnitude of the bias field can be electrically tuned to achieve a desired magnetic field; when not being switched, the achieved field is maintained with zero static power consumption. The magnetic circuit comprises two distinct types of permanent magnets: an NdFeB magnet with relatively high coercivity and an AlNiCo V magnet with relatively low coercivity combined with a tuning coil for adjusting its magnetization. Soft magnetic yoke pieces link the permanent magnets and also define an air gap. Pulses of current through the coil will adjust the remanence of the AlNiCo magnet, thereby changing the flux and field in the air gap. A magnetic bias circuit with a compact volume of 0.27 cm3 has been constructed, providing an adjustable dc magnetic field with a tuning range of 3.7 to 288.5 mT within a 1 mm air gap.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信