{"title":"General-Purpose Data Streaming FPGA TDC Synchronized by SerDes-Based Clock Synchronization Technique","authors":"Ryotaro Honda;Masahiro Ikeno;Che-Sheng Lin;Masayoshi Shoji","doi":"10.1109/TNS.2025.3541731","DOIUrl":null,"url":null,"abstract":"This study proposes a clock synchronization protocol using the functionalities of IDELAYE2 and IOSERDESE2 primitives of an AMD Xilinx field-programmable gate array (FPGA) to serve as a general-purpose data-streaming type time-to-digital converter (TDC) for particle and nuclear physics experiments. A clock synchronization protocol called local area common clock protocol (LACCP) was developed as the upper layer protocol of a proprietary link (MIKUMARI), which was defined prior to this work by a community of users from the experimental physics field in Japan. Clock synchronization is realized using a round-trip time measurement with the system clock period and a fine offset time estimation, which corresponds to the clock signal phase difference between the primary and secondary FPGAs. The fine offset measurement is based on information from the IDELAYE2 and ISERDESE2 primitives utilized as the physical layer of the MIKUMARI link. No extra component is used. The LACCP can be implemented in an FPGA using general IO pin pairs for serial transmission and reception. A streaming high-resolution TDC (Str-HRTDC) was developed based on a tapped-delay-line (TDL) built from CARRY4 primitives in the AMD Xilinx Kintex-7 FPGA. It continuously measures the timing with 19.5-ps intrinsic resolution in <inline-formula> <tex-math>$\\sigma $ </tex-math></inline-formula> and provides unique timestamp information over 2.4 h by introducing the time frame structure defined and synchronized by LACCP. The clock synchronization accuracy and the timing resolution were evaluated by connecting four modules with optical fibers up to 100 m in length. No cable length dependence was confirmed. The obtained synchronization accuracy was approximately 300 ps. The timing resolution between two synchronized modules was 23.1 ps in <inline-formula> <tex-math>$\\sigma $ </tex-math></inline-formula>.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 3","pages":"614-622"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884839/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a clock synchronization protocol using the functionalities of IDELAYE2 and IOSERDESE2 primitives of an AMD Xilinx field-programmable gate array (FPGA) to serve as a general-purpose data-streaming type time-to-digital converter (TDC) for particle and nuclear physics experiments. A clock synchronization protocol called local area common clock protocol (LACCP) was developed as the upper layer protocol of a proprietary link (MIKUMARI), which was defined prior to this work by a community of users from the experimental physics field in Japan. Clock synchronization is realized using a round-trip time measurement with the system clock period and a fine offset time estimation, which corresponds to the clock signal phase difference between the primary and secondary FPGAs. The fine offset measurement is based on information from the IDELAYE2 and ISERDESE2 primitives utilized as the physical layer of the MIKUMARI link. No extra component is used. The LACCP can be implemented in an FPGA using general IO pin pairs for serial transmission and reception. A streaming high-resolution TDC (Str-HRTDC) was developed based on a tapped-delay-line (TDL) built from CARRY4 primitives in the AMD Xilinx Kintex-7 FPGA. It continuously measures the timing with 19.5-ps intrinsic resolution in $\sigma $ and provides unique timestamp information over 2.4 h by introducing the time frame structure defined and synchronized by LACCP. The clock synchronization accuracy and the timing resolution were evaluated by connecting four modules with optical fibers up to 100 m in length. No cable length dependence was confirmed. The obtained synchronization accuracy was approximately 300 ps. The timing resolution between two synchronized modules was 23.1 ps in $\sigma $ .
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.