Low-emission methane fueled dual-bypass turbofan engine optimization based on machine learning: Energy-economic-environmental (3E) analysis

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Mohammadreza Sabzehali, Mahdi Alibeigi, Saeed Karimian Aliabadi
{"title":"Low-emission methane fueled dual-bypass turbofan engine optimization based on machine learning: Energy-economic-environmental (3E) analysis","authors":"Mohammadreza Sabzehali,&nbsp;Mahdi Alibeigi,&nbsp;Saeed Karimian Aliabadi","doi":"10.1016/j.clet.2025.100919","DOIUrl":null,"url":null,"abstract":"<div><div>In aero propulsion, fuel consumption and pollutant rate emitted by aero engines are the most important issues in supersonic flight. In this research, a dual-bypass turbofan engine is proposed as an alternative to conventional turbofan engines, having less fuel consumption and less pollutant production. Both primary pollutants of the combustion engine, nitrogen oxides (NOx) and carbon monoxide (CO), and the economic as well as the environmental indices, i.e., thrust-specific nitrogen oxide production rate (TSNOx, g/kN·s), thrust-specific carbon monoxide production rate (TSCO, g/kN·s), thrust-specific fuel consumption (TSFC, g/kN.s), thrust-specific fuel cost (TSFCC, $/kN·s), have been considered in this analysis. A machine learning-based prediction method was employed to accelerate the multi-objective optimization. It has shown the Random Forest technique could enhanced the convergence of NSGA-II. Based on the results, 40% increase in the first bypass ratio, would reduce TSFC by 10%, and a 100% increase in the second bypass ratio, would reduce TSFC by 5%. Boosting the pressure ratio of the high-pressure compressor can result in lower NOx and CO production, while boosting the turbine inlet temperature would cause more NOx production. Although, in the latter case the CO production is lower. The optimum design point of the proposed engine has been drawn based on optimization. The proposed methodology and the mathematical model presented here, could be assumed as a basis for comprehensive analysis of the dual bypass engine. It may expedite the future studies in the field of supersonic business engines characterized by reduced pollution and improved efficiency.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"26 ","pages":"Article 100919"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825000424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In aero propulsion, fuel consumption and pollutant rate emitted by aero engines are the most important issues in supersonic flight. In this research, a dual-bypass turbofan engine is proposed as an alternative to conventional turbofan engines, having less fuel consumption and less pollutant production. Both primary pollutants of the combustion engine, nitrogen oxides (NOx) and carbon monoxide (CO), and the economic as well as the environmental indices, i.e., thrust-specific nitrogen oxide production rate (TSNOx, g/kN·s), thrust-specific carbon monoxide production rate (TSCO, g/kN·s), thrust-specific fuel consumption (TSFC, g/kN.s), thrust-specific fuel cost (TSFCC, $/kN·s), have been considered in this analysis. A machine learning-based prediction method was employed to accelerate the multi-objective optimization. It has shown the Random Forest technique could enhanced the convergence of NSGA-II. Based on the results, 40% increase in the first bypass ratio, would reduce TSFC by 10%, and a 100% increase in the second bypass ratio, would reduce TSFC by 5%. Boosting the pressure ratio of the high-pressure compressor can result in lower NOx and CO production, while boosting the turbine inlet temperature would cause more NOx production. Although, in the latter case the CO production is lower. The optimum design point of the proposed engine has been drawn based on optimization. The proposed methodology and the mathematical model presented here, could be assumed as a basis for comprehensive analysis of the dual bypass engine. It may expedite the future studies in the field of supersonic business engines characterized by reduced pollution and improved efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信